Advanced Technology Microwave Sounder (ATMS) Geolocation Analysis

Mark Esplin, Kris Robinson, Ben Esplin, Deron Scott

CrIS/ATMS Instrument Suite (CrIMSS)

Overview
- Used ATMS observation of shoreline crossings to determine sensor pointing accuracy (geolocation)
- Used two complimentary methods to obtain sub-pixel accuracy
- Obtained geolocation for window channels from all five ATMS bands
- Obtained best fit roll, pitch, and yaw error angles for the two bands with the largest geolocation errors
- May warrant updating the ATMS pointing parameters

ATMS Channel Definitions
- Each band has a separate geolocation
- Channels 1, 2, 3, 16 are window channels
- Channel 17 is sensitive to water vapor but under dry conditions, shorelines are visible

ATMS Channel Definitions

ATMS Channel Definitions

ATMS Channel Definitions

ATMS Channel Definitions

Shoreline Crossing Method

Method is illustrated with CrIS data due to the complexity of overlapping ATMS FOVs
- Fit a cubic polynomial through four points in the in-track or cross-track direction
- Use the inflection point as the shore crossing point
- Use a least-squares-fit to coastlines to minimize total error for the scene

Land-Sea Fraction Method

Method is illustrated with CrIS data and CrIS/ATMS Instrument Suite (CrIMSS)
- Determine the fraction of land and sea in each ATMS footprint (ifrac)
- Use a simple linear model to calculate expected field of view (FOV) footprint brightness temperatures (TcalFOV)
 \[T_{calFOV} = (1 - \text{ifrac})T_{land} + \text{ifrac}T_{sea} \]
- Find average brightness temperatures for land (Tland) and sea (Tsea) from the measured data
- Compare calculated brightness temperatures to observed brightness temperatures
- Shift shoreline to minimize difference between observed and calculated brightness temperatures by minimizing the following function:
 \[x^2 = \sum_{i} (T_{calFOV_i} - T_{atmosphere})^2 \]

Geolocation Results

Land-Sea Fraction Method

Location of ATMS Geolocated Scenes

Coastlines next to dry desert areas give good brightness temperature contrasts

Geolocation Results

Tabulated Nadir Geolocation Error

<table>
<thead>
<tr>
<th>Channel</th>
<th>In-track (km)*</th>
<th>Cross-track (km)*</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.8 (3.1)</td>
<td>-3.1 (2.2)</td>
<td>185</td>
</tr>
<tr>
<td>2</td>
<td>-5.8 (3.1)</td>
<td>1.6 (2.6)</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>-2.8 (2.2)</td>
<td>-3.1 (2.2)</td>
<td>185</td>
</tr>
<tr>
<td>16</td>
<td>-3.4 (3.8)</td>
<td>-0.6 (3.3)</td>
<td>183</td>
</tr>
<tr>
<td>17</td>
<td>1.1 (2.1)</td>
<td>0.4 (2.6)</td>
<td>84</td>
</tr>
</tbody>
</table>

*Numbers in parentheses are standard deviations

- Geolocation data plotted were binned into 10 FOV bins to reduce scatter
- Data presented uses land/sea fraction method

Test for Method Reliability

For Channel 17 only cases with a brightness temperature difference between land and sea larger than 12 K were used

ATMS Channel Definitions

ATMS Channel Definitions

ATMS Channel Definitions

ATMS Channel Definitions

Fit for Sensor Pointing Error

Channels 3 and 4 are V band channels that share a common feed horn. As expected, the geolocation results from the two channels are nearly identical.