Validation of the JPSS NOAA-Unique CrIS/ATMS Processing System (NUCAPS) Operational EDR

Nicholas R. Nalli1,2, A. Gambacorta3, C. Barnet3, Q. Liu2, T. Reale2, C. Tan1,2, F. Iturbide-Sanchez1,2, B. Sun1,2, L. Borg4, D. Tobin4, E. Joseph5, V. R. Morris5, A. K. Mollner6, T. King1,2, W. W. Wolf2, J. W. Smith7, F. Tilley1,2, D. Wolfe8, et al.

1IMSG, Rockville, Maryland, USA
2NOAA/NESDIS/STAR, College Park, Maryland, USA
3STC, Columbia, Maryland, USA
4University of Wisconsin-Madison, Madison, Wisconsin, USA
5Howard University, Washington, D.C., USA
6The Aerospace Corp., El Segundo, California, USA
7National Research Council, College Park, Maryland, USA
8NOAA/ESRL/PSD, Boulder, Colorado, USA

AMS Annual Meeting
Phoenix, Arizona, USA
January 2015
Outline

• JPSS Sounder EDR Cal/Val Overview
 – JPSS EDR validation
 – CrIS/ATMS (CrIMSS) Sounder Operational EDR
 ▪ NOAA-Unique CrIS/ATMS Processing System (NUCAPS)
 – JPSS Level 1 Requirements
 – Validation Methodology
 ▪ Validation “Hierarchy”
 ▪ Statistical Metrics
 – JPSS S-NPP Validation Datasets
 ▪ STAR Validation Archive (VALAR)
 ▪ NOAA Products Validation System (NPROVS/NPROVS+)

• NUCAPS EDR Product Validation
 – Temperature and Moisture (AVTP and AVMP) EDR
 – Trace Gas
 ▪ Ozone profile EDR
 – Long-Term Monitoring (LTM)

• Future Work
 – SNPP ICV and LTM
Validation of NOAA-Unique Operational Sounder EDR

JPSS SOUNDER EDR CAL/VAL

OVERVIEW
• **Validation** is “the process of ascribing uncertainties to these radiances and retrieved quantities through comparison with correlative observations” (Fetzer et al., 2003).
 - EDR validation supports validation of SDRs and cloud-cleared radiances (a Level 2 product shown to have positive impact on NWP; e.g., Le Marshall et al., 2008)
 - EDR validation enables development/improvement of algorithms

• **Users of sounder EDR observations** (AVTP, AVMP and trace gas) include
 - Weather Forecast Offices (AWIPS)
 - Nowcasting / severe weather
 - NOAA Data Centers (e.g., NGDC, CLASS)
 - Basic and applied science research/investigation (e.g., Pagano et al., 2013)

• **JPSS Cal/Val Phases**
 - Pre-Launch / Early Orbit Checkout (EOC)
 - Intensive Cal/Val (ICV)
 - Validation of EDRs against multiple correlative datasets
 - Long-Term Monitoring (LTM)
 - Characterization of all EDR products and long-term demonstration of performance

• In accordance with the JPSS phased schedule, the **SNPP CrIMSS EDR cal/val plan** was devised to ensure the EDR would meet the mission **Level 1 requirements** (Barnet, 2009)

• The **EDR validation methodology** draws upon previous work with AIRS and IASI (Nalli et al., 2013, *JGR Special Section on SNPP Cal/Val*)
 - Classification of various approaches into a “Validation Methodology Hierarchy”
CrIS/ATMS (CrIMSS) Sounder Operational EDR: NOAA Unique CrIS/ATMS Processing System (NUCAPS)

- **Original IDPS Algorithm**
 - Optimal Estimation (OE) algorithm originally developed by AER, LaRC and NGAS
 - CrIMSS operational product (MX7.1) validated through Beta and Provisional Maturities (*Divakarla et al.*, 2014)

- **NUCAPS Algorithm** (*Gambacorta et al.* 2014)
 - Operational algorithm beginning Sep 2013
 - Transition to NUCAPS validation
 - Stage-1 Validated Maturity achieved in Sep 2014
 - Line-for-line modular implementation of the iterative, multistep AIRS Science Team retrieval algorithm
 - Non-precipitating conditions (cloudy, partly cloudy, clear)
 - Atmospheric Vertical Temperature, Moisture (AVTP, AVMP) and trace gas profiles (O₃, CO, CO₂, CH₄)

[Images of NUCAPS AVTP, AVMP, O₃, CO]

http://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/index.html
AVTP and AVMP EDR

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVTP, Cloud fraction < 50%, surface to 300 hPa</td>
<td>1.6 K / 1-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction < 50%, 300–30 hPa</td>
<td>1.5 K / 3-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction < 50%, 30–1 hPa</td>
<td>1.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction < 50%, 1–0.5 hPa</td>
<td>3.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction ≥ 50%, surface to 700 hPa</td>
<td>2.5 K / 1-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction ≥ 50%, 700–300 hPa</td>
<td>1.5 K / 1-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction ≥ 50%, 300–30 hPa</td>
<td>1.5 K / 3-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction ≥ 50%, 30–1 hPa</td>
<td>1.5 K / 5-km layer</td>
</tr>
<tr>
<td>AVTP, Cloud fraction ≥ 50%, 1–0.5 hPa</td>
<td>3.5 K / 5-km layer</td>
</tr>
</tbody>
</table>

Trace Gas EDR

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (Carbon Monoxide) Total Column Precision</td>
<td>35%, or full res mode 15%</td>
</tr>
<tr>
<td>CO (Carbon Monoxide) Total Column Accuracy</td>
<td>±25%, or full res mode ±5%</td>
</tr>
<tr>
<td>CO₂ (Carbon Dioxide) Total Column Precision</td>
<td>0.5% (2 ppmv)</td>
</tr>
<tr>
<td>CO₂ (Carbon Dioxide) Total Column Accuracy</td>
<td>±1% (4 ppmv)</td>
</tr>
<tr>
<td>CH₄ (Methane) Total Column Precision</td>
<td>1% (=20 ppbv)</td>
</tr>
<tr>
<td>CH₄ (Methane) Total Column Accuracy</td>
<td>±4% (=80 ppmv)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ (Ozone) Profile Precision, 4–260 hPa (6 statistic layers)</td>
<td>20%</td>
</tr>
<tr>
<td>O₃ (Ozone) Profile Accuracy, 4–260 hPa (6 statistic layers)</td>
<td>±10%</td>
</tr>
<tr>
<td>O₃ (Ozone) Profile Uncertainty, 4–260 hPa (6 statistic layers)</td>
<td>25%</td>
</tr>
<tr>
<td>O₃ (Ozone) Profile Uncertainty, 260 hPa to sfc (1 statistic layer)</td>
<td>25%</td>
</tr>
</tbody>
</table>

Source: L1RD (2014), pp. 45-49

Global requirements defined for lower and upper atmosphere subdivided into 1-km and 2-km layers for AVTP and AVMP, respectively.

Source: L1RD (2014), pp. 41, 43
Validation Methodology Hierarchy
(e.g., Nalli et al., 2013)

1. Numerical Model (e.g., ECMWF, NCEP/GFS) Global Comparisons
 - Large, truly global samples acquired from Focus Days
 - Useful for early sanity checks, bias tuning and regression
 - However, not independent truth data

2. Satellite EDR (e.g., AIRS, ATOVS, COSMIC) Intercomparisons
 - Global samples acquired from Focus Days (e.g., AIRS)
 - Consistency checks; merits of different retrieval algorithms
 - However, IR sounders have similar error characteristics; must take rigorous account of averaging kernels of both systems (e.g., Rodgers and Connor, 2003)

3. Conventional RAOB Matchup Assessments
 - WMO/GTS operational sondes launched ~2/day for NWP
 - Useful for representation of global zones and long-term monitoring
 - Large statistical samples acquired after a couple months’ accumulation (e.g., Divakarla et al., 2006)
 - NOAA Products Validation System (NPROVS) (Reale et al., 2012)
 - Limitations:
 - Skewed distribution toward NH-continental sites
 - Mismatch errors, potentially systematic at individual sites
 - Non-uniform, less-accurate and poorly characterized radiosondes
 - RAOBs assimilated, by definition, into numerical models

4. Dedicated/Reference RAOB Matchup Assessments
 - Dedicated for the purpose of satellite validation
 - Well-specified error characteristics and optimal accuracy
 - Minimal mismatch errors
 - Include atmospheric state “best estimates” or “merged soundings”
 - Reference sondes: CFH, corrected RS92
 - Traceable measurement
 - Detailed performance specification and regional characterization
 - Limitation: Small sample sizes and geographic coverage
 - E.g., ARM sites (e.g., Tobin et al., 2006), AEROSE, ideally GRUAN

5. Intensive Field Campaign Dissections
 - Include dedicated RAOBs, especially those not assimilated into NWP models
 - Include ancillary datasets (e.g., ozonesondes, lidar, MAERI, MWR, sunphotometer, etc.)
 - Ideally include funded aircraft campaign using IR sounder (e.g., NAST-I, S-HIS)
 - Detailed performance specification; state specification; SDR cal/val; EDR “dissections”
 - E.g., AEROSE, CalWater2, JAIVEX, WAVES, AWEX-G, EAQUATE

7-Jan-15 N. R. Nalli et al. - 2015 AMS Annual
Assessment Methodology: Statistical Metrics

- Level 1 AVTP and AVMP accuracy requirements are defined over **coarse layers**, roughly 1–5 km for tropospheric AVTP and 2 km for AVMP (Table, Slide 5).
- We have recently introduced rigorous **geographic surface area weighting** to these schemes for dedicated/reference RAOB samples.

AVTP

\[
\text{RMS}(\Delta T_{\mathcal{L}}) = \sqrt{\frac{1}{n_j} \sum_{j=1}^{n_j} (\Delta T_{\mathcal{L},j})^2} \quad \text{BIAS}(\Delta T_{\mathcal{L}}) \equiv \overline{\Delta T_{\mathcal{L}}} = \frac{1}{n_j} \sum_{j=1}^{n_j} \Delta T_{\mathcal{L},j} \\
\text{STD}(\Delta T_{\mathcal{L}}) \equiv \sigma(\Delta T_{\mathcal{L}}) = \sqrt{[\text{RMS}(\Delta T_{\mathcal{L}})]^2 - [\text{BIAS}(\Delta T_{\mathcal{L}})]^2}
\]

AVMP and O₃

- W2 weighting was used in determining Level 1 Requirements
- To allow compatible STD calculation, W2 weighting should be consistently used for both RMS and BIAS

\[
\Delta q_{\mathcal{L},j} = \frac{q_{\mathcal{L},j} - q_{\mathcal{L},j}}{q_{\mathcal{L},j}} \quad \text{RMS}(\Delta q_{\mathcal{L}}) = \sqrt{\frac{\sum_{j=1}^{n_j} W_{\mathcal{L},j} (\Delta q_{\mathcal{L},j})^2}{\sum_{j=1}^{n_j} W_{\mathcal{L},j}}}, \quad \text{water vapor weighting factor, } W_{\mathcal{L},j},
\]

\[
\text{BIAS}(\Delta q_{\mathcal{L}}) = \frac{\sum_{j=1}^{n_j} W_{\mathcal{L},j} \Delta q_{\mathcal{L},j}}{\sum_{j=1}^{n_j} W_{\mathcal{L},j}}, \quad W_{\mathcal{L},j} = \begin{cases}
1, & W^0 \\
q_{\mathcal{L},j}, & W^1 \\
(q_{\mathcal{L},j})^2, & W^2
\end{cases}
\]

\[
\text{STD}(\Delta q_{\mathcal{L}}) = \sqrt{[\text{RMS}(\Delta q_{\mathcal{L}})]^2 - [\text{BIAS}(\Delta q_{\mathcal{L}})]^2}
\]
JPSS SNPP Validation Datasets and Tools

- **STAR Validation Archive (VALAR) (Nalli et al., 2014)**
 - Low-level research archive designed to meet needs of Cal/Val Plan
 - Dedicated/reference and intensive campaign RAOBs
 - SDR/TDR granule-based collocations (“stamps”) within 500 km radius acquired off SCDR (past 90 days) or CLASS (older than 90 days)
 - Basis for Trace Gas EDR validation
 - Online retrievals / retrospective reprocessing
 - MATLAB and IDL statistical codes and visualization software tools for monitoring
 - Rigorous coarse-layer (1-km, 2-km) product performance measures based on statistical metrics corresponding to Level 1 Requirements detailed in Nalli et al. (2013)

- **NOAA Products Validation System (NPROVS) (Reale et al., 2012)**
 - Conventional RAOBs (NPROVS+ dedicated/reference), “single closest FOR” collocations
 - HDFS-formatted Collocation Files facilitates GRUAN RAOB matchups within VALAR
 - NRT monitoring capability
 - Satellite EDR intercomparison (e.g., Nalli et al. 2013) capability
 - Java based graphical user interface tools for monitoring
 - Profile Display (PDISP)
 - NPROVS Archive Summary (NARCS)
VALAR Dedicated and Reference RAOBs

JPSS S-NPP Dedicated Years 1 and 2 (2012-2014)

JPSS S-NPP Dedicated Year 3 (2014-2015)

GRUAN Reference Sites (NPROVS+ Collocation)

ACAPEX/CalWater2 Campaign (Jan-Feb 2015)
Validation of NOAA-Unique Operational Sounder EDR

NUCAPS EDR PRODUCT VALIDATION
NPROVS Conventional RAOB Collocations
Single Closest FOR (Reale et al., 2012)

- 1–11 Sep 2014
- RS92 and RS41 sondes
- Single-closest FOR
- Space-time window 1
 - ±3 h before/after overpass
 - 75 km
- Sample size 1
 \(N = 757 \)
NPROVS Conventional RAOB Collocations

Single Closest FOR (Reale et al., 2012)

- 1–11 Sep 2014
- RS92 and RS41 sondes
- Single-closest FOR
- Space-time window 2
 - -1–0 h before overpass
 - 75 km
- Sample size 2 $N = 39$
NDE-OPS NUCAPS and AIRS versus NPROVS
Collocated Conventional RAOB: Sample 1

AVTP (BIAS and RMS)
NOAA Products Validation System (NPROVS)

AVMP (BIAS and RMS)
NOAA Products Validation System (NPROVS)

7-Jan-15
N. R. Nalli et al. - 2015 AMS Annual
NDE-OPS NUCAPS and AIRS versus NPROVS
Collocated Conventional RAOB: Sample 2

AVTP (BIAS and RMS)

NOAA Products Validation System (NPROVS)

September 1, 2014 to September 11, 2014

Pressure (hPa)

Temperature (sat-baseline) deg K; Bias / Std Dev

Baseline: Radiosonde Radiosonde

AIRS AQUA NUCAPS NPP

AVMP (BIAS and RMS)

NOAA Products Validation System (NPROVS)

September 1, 2014 to September 11, 2014

Pressure (hPa)

Water Vapor (sat-baseline) % error: Bias / Std Dev

Baseline: Radiosonde Radiosonde

AIRS AQUA NUCAPS NPP
VALAR RAOB sample weighted by zonal surface areas

Large random error due to RAOB drift in high latitudes?

n = 1881
VALAR RAOB sample weighted by zonal surface areas

Extreme dry subsidence in tropical sites (AEROSE)?
NUCAPS Trace Gas Validation

- **Validation of NUCAPS Trace Gases**
 - Available *in situ* truth datasets
 - Collocated ozonesondes for O_3 (ozone) profile EDR
 - SHADOZ sites
 - WOUDC currently being acquired
 - AEROSE and CalWater2 dedicated ozonesondes
 - Collocated aircraft data for CO, CO_2, O_3
 - MOZAIC
 - Additional data currently being sought

- **Comparisons of NUCAPS CO and O_3** can also be performed against models (i.e., Step 1 of Validation Hierarchy; e.g., WRF-CHEM Model, *Smith and Nalli, 2014*)
Preliminary Ozone Profile Validation

VALAR AEROSE Dedicated and SHADOZ Ozonesonde Sample

VALAR Site Accepted Matchups ($\delta x \leq 125$ km)

Ozone RMS ($n_{qa}=902$)

Ozone Bias ($n_{qa}=902$)
Long-Term Monitoring (LTM)

NPROVS NARCS Conventional RAOB Collocation

- Temperature 506.00 mb Layer Statistics
- NPROVS
- NARCS
- Conventional RAOB
- VALAR
- Dedicated/GRUAN/Ozonesonde Collocation

ATOVS NOAA-19
AIRS Aqua
NOAA IASI MetOp-A
NUCAPS

VALAR Dedicated/GRUAN/Ozonesonde Collocation

- AVTP 506 hPa
 - $n = 1838$
- AVMP 459 hPa
- Ozone 12 hPa
 - $n = 893$

Water Vapor Percent Error 424.367 mb Layer Statistics

ATOVS NOAA-19
AIRS Aqua
NOAA IASI MetOp-A
NUCAPS
Future Work: SNPP ICV and LTM

• NUCAPS Stages 2-3 Validated Maturities
 – AVTP/AVMP, Trace Gas validation for operational and offline code versions
 ▪ Global coarse-layer ensemble statistical analyses versus dedicated, reference and conventional RAOB truth
 ▪ Geographic surface area weighting
 ▪ Apply averaging kernels in NUCAPS error analyses, including ozone profile EDR
 – VALAR growth, development and enhancements
 ▪ Support ACAPEX/CalWater2 (Pacific Ocean, Jan-Feb 2015) and future AEROSE campaigns
 ▪ Support ARM and PMRF dedicated RAOBs (including dual-launches, “best estimates”)
 ▪ Leverage GRUAN reference RAOBs
 ▪ Trace gas (O₃, CO, CO₂) datasets
 ▪ GRUAN reprocessing of RS92 RAOB data (viz., entire AEROSE data record)
 – Support short- and long-term NUCAPS EDR algorithm development, updates, improvements

• Other Related Work
 – Collocation uncertainty estimates
 – calc – obs analyses for different forward models (CRTM, LBLRTM, SARTA, etc.)
 – Support skin SST EDR validation
 – Support EDR applications (AWIPS, atmospheric chemistry users)
Acknowledgments

• **AEROSE** works in collaboration with the NOAA PIRATA Northeast Extension (PNE) project (R. Lumpkin, G. Foltz and C. Schmid), and is supported by the NOAA Educational Partnership Program (EPP) grant NA17AE1625, NOAA grant NA17AE1623, JPSS and STAR.

• The **U.S. DOE Atmospheric Radiation Measurement (ARM) program**
 — D. Holdridge and J. Mather and the **ARM Climate Research Facility**
 — N. Hickmon, M. Ritsche, A. Haruta, D. Holdridge and the **ARM Mobile Facility 2 (AMF2)**

• Ruud Dirksen and the **GRUAN Lead Center**.

• T. Pagano, E. Fetzer, and the **NASA Sounder Science Team**.

• Contributors to the SNPP NUCAPS EDR validation effort: H. Xie, M. Wilson, AK Sharma, E. S. Maddy, M. Divakarla (STAR); R. O. Knuteson and M. Feltz (UW/CIMSS); X. Liu (NASA/LaRC); P. J. Minnet (UM/RSMAS); M. Pettey, C. Brown (NPROVS team)

• Contributions to the S-NPP validation data collection effort: B. Demoz and M. Oyola (Howard University); J. E. Wessel (Aerospace).
The measurement equation (e.g., *Taylor and Kuyatt*, 1994) for retrieval includes forward and inverse operators (*Rodgers*, 1990) to estimate the measurand, \(x \), on forward model layers:

\[
\hat{x} = I[F(x, b), b, c]
\]

Rigorous validation therefore requires high-resolution truth measurements (e.g., dedicated RAOB) be reduced to correlative RTA layers (*Nalli et al.*, 2013, *JGR Special Section on SNPP Cal/Val*).

Radiative transfer approach is to integrate quantities over the atmospheric path (e.g., number densities \(\rightarrow \) column abundances), interpolate to RTA (arbitrary) levels, then compute RTA layer quantities, e.g.,

\[
\sum_x(z) = \int_{z_f}^{z} N_x(z') \, dz'
\]
NUCAPS AVTP/AVMP (NDE-OPS) versus VALAR Dedicated RAOB
Ocean Only Day and Night

RAOB sample weighted by zonal surface areas

VALAR Site Accepted Matchups ($\delta x \leq 75$ km)

$n = 382$