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Satellite Precipitation Products (SPPs)
O Climate Data Record

“A CDR is a time series of scientifically-based measurements of the Earth’s environment with

sufficient length, consistency, and continuity to assess and measure climate variability and
change.”

Available @ https://www.ncdc.noaa.qgov/cdr and via Amazon Web Services

O Precipitation CDRs

« CMORPH (gridded, PMW & in-situ) (NOAA CPC P. Xie)

= Global (60N-60S), 30-min, 8x8-km, Daily, 0.25x0.25-deg, 1998-Present, Interim & Final
« PERSIANN-CDR (gridded, IR & in-situ) (UC-Irvine S. Sorooshian)

= Global (60N-60S), Daily, 0.25x0.25-deg, 1983-Present, Final
 GPCP (gridded, IR & in-situ) (UMD R. Adler)

= Global, Daily, 1x1-deg, 1997-Present, Final

1 Other SPPs

TMPA (gridded, multi-satellite precipitation analysis, PMW, IR & in-situ) (NASA G. Huffman)
= Global (50N-50S), 3-hr, Daily, 0.25x0.25-deg, 1988-2019, Interim & Final
IMERG (gridded, multi-satellite, PMW, IR & in-situ) (NASA G. Huffman)

= Global, 30-min, Daily, 0.1x0.1-deg, 2000-Present, Interim & Final


https://www.ncdc.noaa.gov/cdr
https://registry.opendata.aws/noaa-cdr-atmospheric/

CDR Evaluation: Warm/Cold Precipitation
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B Higher biases (overestimation) for PERSIANN and GPCP in winter (DJF) in the Western US.

»» CMORPH displays rainfall underestimation in winter (DJF) and for daily T <0°C.

Prat and Nelson 2023, J. Hydrometeorology
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CDR Evaluation: Extreme Precipitation : 95t
USCRN PERSIANN-CDR
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B All SPPs underestimate extreme precipitation from 19% to 48% at the 95t percentile.

Prat and Nelson 2021, J. Hydrometeorology



Global TC Contribution : TMPA 3B42
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TC Rainfall (mm/yr)

TC Contribution for Selected Urban Areas
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Prat and Nelson 2013, Water Resour. Res.



Examples of recent studies using gridded (level Ill) satellite precipitation
products (SPPs) for applications in relationship with extreme precipitation

Products Location Duration Applications Conclusions Authors
CMORPH, PERSIANN Western US 10-yr Atmospheric rivers SPPs significantly underestimate precipitation and barely capture orographic Behrangi et al.
(PERSIANN, CCS), TMPA (2003-2012) (AR) precipitation with difficulties over snow/frozen surfaces. (2016)
(RT, 3B42) Concerns regarding near-real time SPPs monitoring of ARs.
CMORPH, PERSIANN, Central US 12-yr Atmospheric rivers TRMM 3B42 is found to be the best SPP for accumulation and rain rates Nayak and Villarini
TMPA (RT, 3B42) (2003-2014) (AR) associated with ARs. ARs contribute to about 35% to annual rainfall. (2018)
TMPA 3B42 (a) Southeastern 12-yr Tropical cyclones The percentage of rainfall associated with TC increases with increasing rain Prat and Nelson
US, (b) Global (1998-2009) (TC) intensity and represents about 20% of heavy rainfall (> 20 mm/h) (a). Globally, (2013a,b)
TCs contribute to 5-10% of annual precipitation for basins around the world (b).
TMPA 3842 Global 15-yr Tropical cyclones TCs account for 3.5+1%of the total number of rainy days over TC basins. Prat and Nelson
(1998-2012) (TC) TC days represent between 13% and 31% of daily extremes (> 100mm/day). (2016)
GPCP-Monthly (a), Global (a) 27-yr (1979-2005) | ENSO Monthly and daily precipitation extremes in relation to ENSO. Frequency of Curtis et al.
TMPA 3842 (b) (b) 8-yr (1998-2005) intense rain rates (> 20-, 50-mm/day) show a relationship with ENSO. (2007)
TMPA 3842 Ghana 7-yr IDF curves SPP useful to develop IDF curves for short gauge records or poorly gauged areas. | Endreny and Imbeah
(1998-2006) Limitation of SPP IDF curves to durations of 3-hr or higher. (2009)
CMORPH Eastern 16-yr IDF curves Good agreement between SPP and radar IDF curves for a range of varying Marra et al.
Mediterranean (1998-2013) climates. Potential for using SPP IDF curves in ungauged areas. (2017)
PERSIANN-CDR CONUS 33-yr IDF curves Adjustment of annual maximum time series of SPP prior to drive IDF curves. Faridzad et al.
(river basins) (1983-2015) Method improves Annual Maximum Series (AMS) in particular at high elevation. (2018)
SPP IDF curves fall within Atlas 14 IDF curves uncertainties.
PERSIANN-CDR CONUS 35-yr IDF curves Method to develop IDF curves from SPP. SPP IDFs show considerable Ombadi et al.
(1983-2017) underestimation before adjustment. Extensive assessment of SPP uncertainties (2018)
prior to computation of IDF curves.
TMPA 3842 Angola 16-yr Annual Max Daily TMPA 3B42 slightly underestimate annual maximum daily precipitation. SPP Pombo and de Oliveira
(1998-2013) Rainfall useful for estimating extreme precipitation values for different return periods. (2015)
TMPART Global 15-yr Extreme rainfall Provides useful early warning information for potentially extreme events as a Zhou et al.
(1998-2012) frequency complement to surface based data. Large uncertainties in Average Recurrence (2015)
Interval (ARI) for regions with complex topography.
PERSIANN-CDR Western US 35-yr Extreme rainfall Correction of SPP Annual Maximum Series (AMS) to match gauged data. Gado et al.
(CA, CO) (1983-2017) frequency The method allows using SPP for extreme frequency analysis in ungauged areas. (2017)
CMORPH, PERSIANN-CDR, China 16-yr Probable Maximum | CMORPH and TMPA 3B42 agree well with gauge data over complex terrain Yang et al.
TMPA 3842 (basin) (1998-2013) Precipitation (PMP) (correlation, 24h PMP) and can be used for PMP estimation in ungauged regions. | (2018)
TMPA 3B42 (a), Italy (a) 16-yr (1998-2013) | Hydrologic design TRMM 3B42 underestimates rainfall for deep convection systems. Libertino et al.
IMERG (b) (b) 1-yr (2014-2015) Preliminary analysis using IMERG shows significant improvement. (2016)
CMORPH Ethiopia 3yr Flood early warning Development of a SPP based flood index (rainfall+DEM) for flood early warning. Koriche and Rientjes
(river basin) (JJA: 2007-2008) Effectiveness of SPPs for flood early warning (2016)
TMPART Saudi Arabia 14-yr Flood forecasting Flood forecasting indexes derived from SPP capture high rain rates, daily, and Tekeli and Fouli
(2000-2013) seasonal variations of extreme events. (2016)
TMPA 3842 Global 13-yr Landslides SPP rainfall variability significantly correlates with increase in landslide activity. Kirschbaum et al.
(1958-2010) Use of SPPs for developing a global rainfall-triggered landslide climatology. (2012)

Prat and Nelson 2020, Satellite precipitation measurements and extreme rainfall.
In Satellite Precipitation Measurement, Springer



Near-real Time Drought Monitoring
O Goals

« Compute a daily Standardized Precipitation Index (SPI) in near-real time
based on high-resolution in-situ and satellite precipitation products.

* Provide near-real time drought monitoring resources to the public.

U Precipitation Datasets

« CMORPH-CDR (gridded multi-satellite precipitation, PMW & in-situ)

Global, Daily, 0.25x0.25-deg, 1998-present, 1-day (ICDR), 4-month (CDR)
* NCIimGrid (gridded in-situ precipitation, based on GHCN-D)

CONUS, Daily, 5x5-km, 1950-present, 3-day (prelim), 1-month (final)
 IMERG (multi-satellite & in-situ) (upcoming)

Global, Daily, 0.1x0.1-deg, 2000-present, 12-hr (late run), 3.5-month (final)

J Methods

« SPI Algorithm (2-parameter Gamma & 3-parameter Pearson distributions)
- 30-,90-, 180-, 270-, 365-, and 730-day daily SPI (rainfall accumulation)

« Droughts are characterized as
, Severe (-1.5 2 SPI 2 -1.99) , and Extreme (SPI <-2).
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¢ — Location 90-Day B — Scale

loc 90 day () scale 90 day (

< >

0.0 200.0 400.0 600.0 800.0 1000.0 0.0 100.0 200.0 300.0 400.0 500.0

¥ — Skewness

Location (£), Scale
(B), and Skewness
(y) computed on a
1998-2021 reference
period

July 15t



CMORPH-SPI on July 15t 2012 (0.25x0.25-deg)
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CMORPH-SPI : 180-day
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U.S. Drought Portal (Drought.gov) : NIDIS/NCEI

Global Drought Conditions

Daily SPI (CMORPH) Monthly SPI (GPCC) Vegetation Health Index

CMORPH (CPC MORPHing technique) produces
global precipitation analyses at very high spatial
and temporal resolution. This technique uses
precipitation estimates that have been derived
from low orbiter satellite microwave observations
exclusively, and whose features are transported via
spatial propagation information that is obtained
entirely from geostationary satellite IR data.

This map shows the 3-month Standardized
Precipitation Index (SPI) and is updated daily with a
delay of 2-3 days. Learn more.
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Cloud-based Computing

O Why Convert to Cloud Resources ?

> Very slow computation for a daily process
» Memory intensive process
» Holds loaded data in global arrays

* Pre- and post-processing involve very large sets of files that don’t fit well
into memory, even on large servers

» Output is enormous and difficult for users to access

 For CMORPH a 20GB file, produces 6x20GB SPI files and a 30GB
parameter file

O Progression to Cloud-based Computing

> Store data on cloud servers
» Aggressive subdivision of input data
» 48x48 chunks of CMORPH data to 300 files, 80MB apiece
» Containerization of SPI code package
« Known environment that can be copied anywhere via Docker
» Run hundreds of Lambda functions

» Simultaneous computation of accumulation, parameters, and SPI domain-
wide



Architecture for SPI Cloud Computation
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Using AWS resources for SPI computation (i.e. Kubernetes, S3 ...).

AWS Fargate is a serverless container manager that scales the workers for parallel processing.
=> The DASK environment allows for massive parallel processing and to rapidly scale resources from
zero to a cluster of up to 500 workers and back to zero.

AWS S3 is used for data storage
=> S3 allows for fast parallel data access. All data including input (SPP datasets), intermediate
(Accumulation, Distribution Parameters), and output files (SPI) are stored on S3.

SPI source code is in GitLab (Python). Jupyterhub is the scientific computing environment.

Combining and optimizing all pieces to work together = Framework (i.e. Kubernetes) allows the

code to be transferable to other cloud environments (Google, Microsoft Azure).



Conclusions
O Near-real time daily global SPI derived from CMORPH is available on Drought.gov

Q Extending to IMERG (late, final runs) for a higher resolution SPI (i.e. 6-fold increase).

L Fast processing time: Adaption to the cloud computing environment.
» CMORPH-SPI computation is reduced by 2 orders of magnitude (9-hr to 5-min)
» Ultimately the daily updates will take less than 1-min

O Flexible framework: Use of other precipitation products (SPPs, radar, in-situ) and
other data sets (temperature, ET, groundwater) to derive more complex droughts

indices (SPEI, agricultural drought, hydrological drought).
O SPP requirements & improvements: It depends on the application.

» TCs monitoring: Ability to capture extreme precipitation, low latency (minutes),
high resolution.

» Drought monitoring: More sensitive to average quantities (anomalies), daily
updates are sufficient (using interim product), cold precipitation retrieval is
important at high latitudes and at high elevation.

NC STATE
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https://www.drought.gov/international

