GSFC JPSS CMO November 08, 2023 Released

474-00448-03-03, Revision A Joint Polar Satellite System (JPSS) Code 474

Joint Polar Satellite System Algorithm Specification Volume III: Operational Algorithm Description (OAD) for the CrIS RDR/SDR

Goddard Space Flight Center Greenbelt, Maryland

NOAA / NASA

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

Joint Polar Satellite System Algorithm Specification Volume III: Operational Algorithm Description (OAD) for the CrIS RDR/SDR

Review/Signature/Approval Page

Prepared by:

LEO Ground Services Project SE

Approved by:

Kellyann Jeletic LEO Ground Services Project SEIT Lead

Nicolaie Todirita LEO Ground Services Project Manager

Electronic Approval available on-line at: <u>https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm</u>

Preface

This document is under JPSS Ground configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Configuration Management Office NASA/GSFC Code 474 Greenbelt, MD 20771

Change History Log

Revision	Effective Dete	Description of Changes	
	Enective Date	(Reference the CCR & CCB/ERB Approval Date)	
Rev -	Aug 08, 2013	This was approved by the JPSS Ground ERB via 474-CCR-	
		13-1110 on the effective date shown.	
Rev -1	Oct 23, 2014	This version incorporates 474-CCR-14-2094 which was	
		approved by JPSS Ground ERB on the effective date shown.	
		This version was baselined in support of Change Order 10.	
Rev -1 -	Dec 11, 2019	The expiration date on this document has been extended five	
Revalidated		years by 474-CCR-19-4789, which was approved by the	
		JPSS Ground AERB on Dec 11, 2019. The effective date	
		and the revision/version on this document will remain the	
		same, only the expiration date has been changed.	
Rev A	Aug 09, 2023	This version incorporates 474-CCR-23-6516 which was	
		approved by the Ground ERB on May 01, 2023 and the	
		Ground CCB on May 24, 2023 and 474-CCR-23-6461	
		which was approved by the Ground Segment ERB on Aug	
		04,2023 and by the JPSS Ground Segment CCB on the	
		effective date shown.	

Table of Contents

1	INTRODUCTI	ON	1
	1.1 Objective		1
	1.2 Scope		1
2	RELATED DO	CUMENTATION	2
-	2.1 Parent Docu	iments	2
	2.1 Applicable 1	Documents	2
	2.2 Applicable I	Jocuments	2
3	ALGORITHM	OVERVIEW	3
	3.1 CrIS SDR D	Description	3
	3.1.1 Interfac	es	3
	3.1.1.1 Inpu	its	4
	3.1.1.1.1	Requirements for Input	9
	3.1.1.1.2	Requirements for Applicable Auxiliary/Ancillary and/or Optional Input	
	Data		10
	3.1.1.2 Out	puts	10
	3.1.2 Algorit	hm Processing	.14
	3.1.2.1 Mai	n Module - SDR Generator Application	14
	3.1.2.2 Clas	ss CalibratedSpectra	15
	3.1.2.2.1	CalibratedSpectra Attributes	15
	3.1.2.2.2	CalibratedSpectra Operations	15
	3.1.2.3 CCS	SDSFormat	16
	3.1.2.3.1	CCSDSFormat Attributes	16
	3.1.2.3.2	CCSDSFormat Operations	16
	3.1.2.4 Clas	ss CorrectionMatrix	17
	3.1.2.4.1	CorrectionMatrix Attributes	. 17
	3.1.2.4.2	CorrectionMatrix Operations	17
	3.1.2.5 Clas	ss EngineeringCalibrationRecord	18
	3.1.2.5.1	EngineeringCalibrationRecord Attributes	18
	3.1.2.5.2	EngineeringCalibrationRecord Operations	19
	3.1.2.6 Clas	ss Interferogram	20
	3.1.2.6.1	Interferogram Attributes	20
	3.1.2.6.2	Interferogram Operations	20
	3.1.2.7 Clas	ss TemperatureHistory	21
	3.1.2.7.1	TemperatureHistory Attributes	21
	3.1.2.7.2	TemperatureHistory Operations	21
	3.1.2.8 Clas	ss ScienceDataProcessor	22
	3.1.2.8.1	ScienceDataProcessor Attributes	22
	3.1.2.8.2	ScienceDataProcessor Operations	. 24
	3.1.2.9 Clas	ss SpectraManager	27
	3.1.2.9.1	SpectraManager Attributes	27
	3.1.2.9.2	SpectraManager Operations	28
	3.1.2.10Clas	ss Spectra	31

4

3.1.2.10.2 Spectra Operations 31 3.1.2.11Class TelemetryProcessor Attributes 33 3.1.2.11.1 TelemetryProcessor Operations 33 3.1.2.11.2 TelemetryProcessor Operations 33 3.1.2.12Class VideoData 34 3.1.2.12.1 VideoData Attributes 35 3.1.2.12.2 VideoData Operations 35 3.1.2.12.1 VideoData Operations 35 3.1.2.12.2 VideoData Operations 35 3.1.2.13.1 ScienceCalibrationRecord Attributes 36 3.1.2.13.1 ScienceCalibrationRecord Operations 37 3.1.2.14.2 LAPACK 38 3.1.2.14.3 BEOST 38 3.1.2.14.4 LAPACK 38 3.1.2.14.5 LAPACK 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.16Sliding Window 38 31.2.17Creation and Storage of Correction Matrices 42 3.1.2.16Sliding Window Optimization 41 31.2.19Operational Adaptation, Deviation or Limitations 44 <th>3.1.2.10.1 Spectra Attributes</th> <th>. 31</th>	3.1.2.10.1 Spectra Attributes	. 31
3.1.2.11Class TelemetryProcessor Attributes 33 3.1.2.11.1 TelemetryProcessor Operations 33 3.1.2.11.2 TelemetryProcessor Operations 33 3.1.2.12 TelemetryProcessor Operations 33 3.1.2.12 TelemetryProcessor Operations 34 3.1.2.12 VideoData Attributes 35 3.1.2.12.1 VideoData Operations 35 3.1.2.12.2 VideoData OperationRecord 35 3.1.2.13.1 ScienceCalibrationRecord Attributes 36 3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.14.1 BLAS (BOOST) 38 3.1.2.14.1 BLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.168 Judigned Scans Require Retrieval of Yet Another Scan 40 3.1.2.17Creation and Storage of Correction Matrices 42 43 <	3.1.2.10.2 Spectra Operations	. 31
3.1.2.11.1 TelemetryProcessor Attributes 33 3.1.2.11.2 TelemetryProcessor Operations 33 3.1.2.11.2 TelemetryProcessor Operations 33 3.1.2.12 VideoData Attributes 35 3.1.2.12.1 VideoData Attributes 35 3.1.2.12.2 VideoData Operations 35 3.1.2.13.1 ScienceCalibrationRecord 35 3.1.2.13.1 ScienceCalibrationRecord Operations 36 3.1.2.14.3 ScienceCalibrationRecord Operations 37 3.1.2.14.3 Beinerator Application COTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 31.2.17Creation and Storage of Correction Matrices 42 3.1.2.18Performance 43 31.2.19Operational Adaptation, Deviation or Limitations 44	3.1.2.11Class TelemetryProcessor	. 33
3.1.2.11.2 TelemetryProcessor Operations 33 3.1.2.12Class VideoData 34 3.1.2.12.1 VideoData Attributes 35 3.1.2.12.2 VideoData Operations 35 3.1.2.13.1 ScienceCalibrationRecord 35 3.1.2.13.1 ScienceCalibrationRecord Operations 36 3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.142 Defenerator Application COTS Components 38 3.1.2.142 LAPACK 38 3.1.2.151 One Additional Spectra is Needed to Move the Window 40 3.1.2.152 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.153 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 31.2.17Creation and Storage of Correction Matrices 42 3.1.2.18Performance 43 43 45 31.5 3.1.4 Exception Handling 45 3.1.5 Data Quality Monitoring 45 3.1.2.19Operational Precision Requirements 45 3.1.4 Exception Handling 45 3.1.5 Data Quality Monitoring 45	3.1.2.11.1 TelemetryProcessor Attributes	. 33
3.1.2.12Class VideoData 34 3.1.2.12.1 VideoData Attributes. 35 3.1.2.12.2 VideoData Operations 35 3.1.2.13Class ScienceCalibrationRecord 35 3.1.2.13Class ScienceCalibrationRecord Attributes 36 3.1.2.13.1 ScienceCalibrationRecord Operations 37 3.1.2.14.1 ScienceCalibration COTS Components 38 3.1.2.14.1 BLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 31.2.16Sliding Window Optimization 41 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.16Sliding Window Optimization 41 31.2.16Sliding Window Optimization 41 3.1.2.190perational Adaptation, Deviation or Limitations 44 31.2.2.18Performance 43 3.1.2.190perational Precision Requirements 45 31.3 45 3.1.3 Graceful Degradation <td>3.1.2.11.2 TelemetryProcessor Operations</td> <td>. 33</td>	3.1.2.11.2 TelemetryProcessor Operations	. 33
3.1.2.12.1 VideoData Attributes	3.1.2.12Class VideoData	. 34
3.1.2.12.2 VideoData Operations 35 3.1.2.13Class ScienceCalibrationRecord 35 3.1.2.13.1 ScienceCalibrationRecord Attributes 36 3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.143.D ScienceCalibrationRecord Operations 37 3.1.2.143.D ScienceCalibrationCOTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.17Creation and Storage of Correction Matrices 42 3.1.2.18Performance 43 3.1.2.19Operational Adaptation, Deviation or Limitations 44 3.1.2.20Telemetry Data XML Files 45 3.1.4 Exception Handling 45 3.1.5.1 Quality Monitoring 45 3.1.5.1 Quality Monitoring 45 3.1.5.1 Quality Flags 45 3.1.6	3.1.2.12.1 VideoData Attributes	. 35
3.1.2.13Class ScienceCalibrationRecord 35 3.1.2.13.1 ScienceCalibrationRecord Attributes 36 3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.14SDR Generator Application COTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 41.2.17Creation and Storage of Correction Matrices 42 3.1.2.19Operational Adaptation, Deviation or Limitations 44 41.2.20Telemetry Data XML Files 45 3.1.3 Graceful Degradation 45 45 45 3.1.4 Exception Handling 45 45 3.1.5 Data Quality Monitoring 45 45 3.1.6 Computational Precision Requirements 46 3.1.4 Assumptions and Limitations 46 3.1.5 Luality Flags 45	3.1.2.12.2 VideoData Operations	. 35
3.1.2.13.1 ScienceCalibrationRecord Attributes 36 3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.14SDR Generator Application COTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 41.2.17Creation and Storage of Correction Matrices 42 3.1.2.19Operational Adaptation, Deviation or Limitations 44 41.2.20Telemetry Data XML Files 45 3.1.3 Graceful Degradation 45 45 3.1.4 Exception Handling 45 3.1.5 Data Quality Monitoring 45 3.1.6 Computational Precision Requirements 45 3.1.4 Exception Handling 45 3.1.5 Data Quality Monitoring 45 3.1.4	3.1.2.13Class ScienceCalibrationRecord	. 35
3.1.2.13.2 ScienceCalibrationRecord Operations 37 3.1.2.14SDR Generator Application COTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.14.3 FFTW 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 41.2.16Sliding Window Optimization 41 3.1.2.19Operational Adaptation, Deviation or Limitations 44 43 41.2.20Telemetry Data XML Files 45 3.1.3 Graceful Degradation 45 45 45 3.1.4 Exception Handling 45 45 3.1.5 Data Quality Monitoring 45 45 3.1.6 Computational Precision Requirements 45 45 3.1.4 Exception Handling 45 45 3.1.5 Data Quality Monitoring 45 45 3.1.6 Computational Preci	3.1.2.13.1 ScienceCalibrationRecord Attributes	. 36
3.1.2.14SDR Generator Application COTS Components 38 3.1.2.14.1 uBLAS (BOOST) 38 3.1.2.14.2 LAPACK 38 3.1.2.14.3 FFTW 38 3.1.2.15The Sliding Window 38 3.1.2.15.1 One Additional Spectra is Needed to Move the Window 40 3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan 40 3.1.2.15.3 Granule Version Ids 40 3.1.2.16Sliding Window Optimization 41 41 3.1.2.17Creation and Storage of Correction Matrices 42 3.1.2.19Operational Adaptation, Deviation or Limitations 44 3.1.2.20Telemetry Data XML Files 45 3.1.3 Graceful Degradation 45 3.1.4 Exception Handling 45 3.1.5 Data Quality Monitoring 45 3.1.6 Computational Precision Requirements 45 3.1.7 Algorithm Support Considerations 46 3.1.8.1 Assumptions 46 3.1.4 Exception Requirements 46 3.1.5.1 Quality Flags 45 3.1.6 Computational Prec	3.1.2.13.2 ScienceCalibrationRecord Operations	. 37
3.1.2.14.1uBLAS (BOOST)383.1.2.14.2LAPACK383.1.2.14.3FFTW383.1.2.15.1One Additional Spectra is Needed to Move the Window403.1.2.15.2Unaligned Scans Require Retrieval of Yet Another Scan403.1.2.15.3Granule Version Ids403.1.2.16Sliding Window Optimization413.1.2.17Creation and Storage of Correction Matrices423.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.19Operational Adaptation, Deviation or Limitations453.1.4Exception Handling453.1.5Data Quality Monitoring453.1.6Computational Precision Requirements453.1.7Algorithm Support Considerations463.1.8.1Assumptions463.1.8.1Assumptions463.1.8.1Assumptions463.1.8.2Limitations474.1Glossary474.2Acronyms49	3.1.2.14SDR Generator Application COTS Components	. 38
3.1.2.14.2LAPACK	3.1.2.14.1 uBLAS (BOOST)	. 38
3.1.2.14.3FFTW	3.1.2.14.2 LAPACK	. 38
3.1.2.15The Sliding Window	3.1.2.14.3 FFTW	. 38
3.1.2.15.1One Additional Spectra is Needed to Move the Window403.1.2.15.2Unaligned Scans Require Retrieval of Yet Another Scan.403.1.2.15.3Granule Version Ids403.1.2.16Sliding Window Optimization413.1.2.17Creation and Storage of Correction Matrices423.1.2.18Performance433.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3Graceful Degradation453.1.4Exception Handling453.1.5Data Quality Monitoring453.1.6Computational Precision Requirements453.1.7Algorithm Support Considerations463.1.8.1Assumptions and Limitations463.1.8.2Limitations463.1.8.1Assumptions474.1Glossary474.2Acronyms49	3.1.2.15The Sliding Window	. 38
3.1.2.15.2Unaligned Scans Require Retrieval of Yet Another Scan	3.1.2.15.1 One Additional Spectra is Needed to Move the Window	. 40
3.1.2.15.3Granule Version Ids403.1.2.16Sliding Window Optimization413.1.2.17Creation and Storage of Correction Matrices423.1.2.18Performance433.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3Graceful Degradation453.1.4Exception Handling453.1.5Data Quality Monitoring453.1.6Computational Precision Requirements453.1.7Algorithm Support Considerations463.1.8.1Assumptions and Limitations463.1.8.2Limitations463.1.8.2Limitations463.1.8.2Limitations474.1Glossary474.2Acronyms49	3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan	. 40
3.1.2.16Sliding Window Optimization413.1.2.17Creation and Storage of Correction Matrices423.1.2.18Performance433.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3 Graceful Degradation453.1.4 Exception Handling453.1.5 Data Quality Monitoring453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8.1 Assumptions463.1.8.1 Assumptions463.1.8.2 Limitations463.1.8.2 Limitations474.1 Glossary474.2 Acronyms49	3.1.2.15.3 Granule Version Ids	. 40
3.1.2.17Creation and Storage of Correction Matrices423.1.2.18Performance433.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3 Graceful Degradation453.1.4 Exception Handling453.1.5 Data Quality Monitoring453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8 Assumptions and Limitations463.1.8.1 Assumptions463.1.8.2 Limitations463.1.8.2 Limitations474.1 Glossary474.2 Acronyms49	3.1.2.16Sliding Window Optimization	. 41
3.1.2.18Performance433.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3 Graceful Degradation453.1.4 Exception Handling453.1.5 Data Quality Monitoring453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8.1 Assumptions and Limitations463.1.8.2 Limitations46GLOSSARY/ACRONYM LIST474.1 Glossary49	3.1.2.17Creation and Storage of Correction Matrices	. 42
3.1.2.19Operational Adaptation, Deviation or Limitations443.1.2.20Telemetry Data XML Files453.1.3 Graceful Degradation453.1.4 Exception Handling453.1.5 Data Quality Monitoring453.1.5.1 Quality Flags453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8.1 Assumptions and Limitations463.1.8.2 Limitations46GLOSSARY/ACRONYM LIST474.1 Glossary474.2 Acronyms49	3.1.2.18Performance	. 43
3.1.2.20Telemetry Data XML Files453.1.3 Graceful Degradation453.1.4 Exception Handling453.1.5 Data Quality Monitoring453.1.5.1 Quality Flags453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8.1 Assumptions and Limitations463.1.8.2 Limitations46GLOSSARY/ACRONYM LIST474.1 Glossary474.2 Acronyms49	3.1.2.19Operational Adaptation, Deviation or Limitations	. 44
3.1.3Graceful Degradation453.1.4Exception Handling453.1.5Data Quality Monitoring453.1.5Data Quality Flags453.1.6Computational Precision Requirements453.1.7Algorithm Support Considerations463.1.8Assumptions and Limitations463.1.8.1Assumptions463.1.8.2Limitations46GLOSSARY/ACRONYM LIST474.1Glossary474.2Acronyms49	3.1.2.20Telemetry Data XML Files	. 45
3.1.4 Exception Handling	3.1.3 Graceful Degradation	. 45
3.1.5 Data Quality Monitoring453.1.5.1 Quality Flags453.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8 Assumptions and Limitations463.1.8.1 Assumptions463.1.8.2 Limitations46GLOSSARY/ACRONYM LIST474.1 Glossary474.2 Acronyms49	3.1.4 Exception Handling	. 45
3.1.5.1 Quality Flags	3.1.5 Data Quality Monitoring	. 45
3.1.6 Computational Precision Requirements453.1.7 Algorithm Support Considerations463.1.8 Assumptions and Limitations463.1.8.1 Assumptions463.1.8.2 Limitations46GLOSSARY/ACRONYM LIST474.1 Glossary474.2 Acronyms49	3.1.5.1 Quality Flags	. 45
3.1.7Algorithm Support Considerations	3.1.6 Computational Precision Requirements	. 45
3.1.8 Assumptions and Limitations 46 3.1.8.1 Assumptions 46 3.1.8.2 Limitations 46 GLOSSARY/ACRONYM LIST 47 4.1 Glossary 47 4.2 Acronyms 49	3.1.7 Algorithm Support Considerations	. 46
3.1.8.1 Assumptions 46 3.1.8.2 Limitations 46 GLOSSARY/ACRONYM LIST 47 4.1 Glossary 47 4.2 Acronyms 49	3.1.8 Assumptions and Limitations	. 46
3.1.8.2 Limitations	3.1.8.1 Assumptions	. 46
GLOSSARY/ACRONYM LIST	3.1.8.2 Limitations	. 46
4.1 Glossary	GLOSSARY/ACRONYM LIST	. 47
42 Acronyms 49	4.1 Glossary	. 47
1.2 TO TOTI JIII5	4.2 Acronyms	. 49

List of Figures

Figure 3-1. Processing Chain	3
Figure 3.1.1-1. IPO Model Interface to INF and DMS	4
Figure 3.1.1.1.1-1. CrIS Measurement Sequence	10
Figure 3.1.2.15-1. Sliding Window Concept	39
Figure 3.1.2.16-1. Sliding Window Optimization Concept	42

Figure 3.1.2.1/-1. Sequential Tasking of a Correction Matrix Build
--

List of Tables

Table 3.1.1.1-1 CrIS SDR Truncated Spectral Resolution Inputs	5
Table 3.1.1.1-2. CrIS SDR Full Spectral Resolution Inputs	6
Table 3.1.1.1-3. Parameters Monitored via the Eight Second Science/Calibration Telemetry	
Packet	7
Table 3.1.1.1-4. Parameters Monitored via the Four Minute Engineering Telemetry Packet	8
Table 3.1.1.1-5 Tunable Parameters Provided via the Four Minute Engineering Telemetry RD)R
	8
Table 3.1.1.2-1. CrIS Truncated Spectrum SDR Outputs	11
Table 3.1.1.2-2. CrIS Full Spectrum SDR Outputs	12
Table 3.1.2.1-1. Some Important Classes Used During Processing	14
Table 3.1.2.2.1-1. CalibratedSpectra Attributes	15
Table 3.1.2.2.2-1. CalibratedSpectra Operations	15
Table 3.1.2.3.1-1. CCSDSFormat Operations	16
Table 3.1.2.3.2-1. CCSDSFormat Operations	16
Table 3.1.2.4.1-1. CorrectionMatrix Attributes	17
Table 3.1.2.4.2-1. CorrectionMatrix Operations	17
Table 3.1.2.5.1-1. EngineeringCalibrationRecord Attributes	18
Table 3.1.2.5.2-1. EngineeringCalibrationRecord Operations	19
Table 3.1.2.6.1-1. Interferogram Attributes	20
Table 3.1.2.6.2-1. Interferogram Operations	20
Table 3.1.2.7.1-1. TemperatureHistory Attributes	21
Table 3.1.2.7.2-1. TemperatureHistory Operations	21
Table 3.1.2.8.1-1. ScienceDataProcessor Attributes	22
Table 3.1.2.8.2-1. ScienceDataProcessor Operations	24
Table 3.1.2.9.1-1. SpectraManager Attributes	27
Table 3.1.2.9.2-1. SpectraManager Operations	28
Table 3.1.2.10.1-1. Spectra Attributes	31
Table 3.1.2.10.2-1. Spectra Operations	31
Table 3.1.2.11.1-1. TelemetryProcessor Attributes	33
Table 3.1.2.11.2-1. TelemetryProcessor Operations	33
Table 3.1.2.12.1-1. VideoData Attributes	35
Table 3.1.2.12.2-1. VideoData Operations	35
Table 3.1.2.13.1-1. ScienceCalibrationRecord Attributes	36
Table 3.1.2.13.2-1. ScienceCalibration Operations	37

1 INTRODUCTION

1.1 Objective

The purpose of this Operational Algorithm Description (OAD) document is to express, in computer-science terms, the remote sensing algorithms that produce the Joint Polar Satellite System (JPSS) end-user data products. These products are individually known as Raw Data Records (RDRs), Temperature Data Records (TDRs), Sensor Data Records (SDRs) and Environmental Data Records (EDRs). In addition, any Intermediate Products (IPs) produced in the process. The OAD provides a software description of that science as implemented in the operational ground system.

The purpose of an OAD is two-fold:

- Provide initial implementation design guidance to the operational software developer.
- Capture the "as-built" operational implementation of the algorithm reflecting any changes needed to meet operational performance/design requirements.

An individual OAD document describes one or more algorithms used in the production of one or more data products. This particular document describes operational software implementation for the Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR).

1.2 Scope

The scope of this document is limited to the description of the core operational algorithm(s) required to create the CRIS FS SDR. The basis for the geolocation algorithm is described in this document.

2 RELATED DOCUMENTATION

The latest JPSS documents can be obtained from URL:

<u>https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm</u>. JPSS Project documents have a document number starting with 470, 472 or 474 indicating the governing Configuration Control Board (CCB) (Program, Flight or Ground) that has the control authority of the document.

2.1 Parent Documents

The following reference document is the Parent Document from which this document has been derived. Any modification to a Parent Document will be reviewed to identify the impact upon this document. In the event of a conflict between a Parent Document and the content of this document, the JPSS Program CCB has the final authority for conflict resolution.

Document Number	Title
474-00448-01-03	JPSS Algorithm Specification Volume I: SRS for the CRIS RDR/SDR

2.2 Applicable Documents

The following documents are the Applicable Documents from which this document has been derived. Any modification to an Applicable Document will be reviewed to identify the impact upon this document. In the event of conflict between an Applicable Document and the content of this document, the JPSS Program CCB has the final authority for conflict resolution.

Document Number	Title	
429-05-02-42	NPP Mission Data Format Control Book (MDFCB)	
429-05-02-42-02	NPP MDFCB Appendix A	
472-00251	Mission Data Format Control Book (MDFCB) Joint Polar Satellite System-1 (JPSS-1)	
474-00448-02-03	JPSS Algorithm Specification Volume II: Data Dictionary for the CRIS RDR/SDR	
474-00448-04-03	JPSS Algorithm Specification Volume IV: SRS Parameter File (SRSPF) for the CRIS RDR/SDR	

3 ALGORITHM OVERVIEW

This document presents the theoretical basis of the CrIS SDR Algorithms. The functional flow of algorithms required to transform a Raw Data Record (RDR) coming from the satellite into a Sensor Data Record (SDR) is described.

This document describes the CrIS SDR Algorithms specific to processing required at the ground segment. It covers the processing needs for all data being sent to the ground when the instrument is operational, including observational and calibration data, for all measurements performed by the instrument. The algorithms for decoding and calibrating the calibration data (e.g., generation of Internal Calibration Target (ICT) radiance) are also covered here.

Figure 3-1 identifies the top level processing flow of the CrIS SDR Algorithm.

Figure 3-1. Processing Chain

(Note: Figure 3-1 needs to be updated to include nonlinearity correction.)

3.1 CrIS SDR Description

3.1.1 Interfaces

To begin data processing, the Infrastructure (INF) Subsystem Software Item (SI) initiates the CrIS SDR algorithm. The INF SI provides tasking information to the algorithm indicating which granule to process. The Data Management Subsystem (DMS) SI provides data storage and

retrieval capability. CrIS SDR processing is retaskable, so instead of shutting down after processing it requests additional tasking information from INF and continues processing with this information. A library of C++ classes implements the SI interfaces, as depicted in Figure 3.1.1-1.

Figure 3.1.1-1. IPO Model Interface to INF and DMS

3.1.1.1 Inputs

Implementation of CrIS SDR requires CrIS RDRs, Space Craft Diary RDR, engineering calibration record, the correction matrix, the fill packet look-up table, and the tunable parameters. See Tables 3.1.1.1-1 and 3.1.1.1-2.

Input	Description	Reference Document
CrIS Science RDR	The RDRs processed by the CrIS SDR algorithm are science RDRs of three types: interferogram packets, 8 s science/calibration packets (SciCaIP) and 4min engineering packets (EP). An interferogram packet contains Earth Scene (ES), Deep Space (DS), or Internal Calibration Target (ICT) interferogram measurements. An 8s SciCaIP is created every 8 seconds for each scan. It contains calibration data such as ICT and scan baffle temperature measurements. A 4 min EP is created every 4 minutes, or after every 30 scan measurements.	474-00448-02- 03_JPSS-DD-Vol-II- Part-3
Spacecraft Diary RDR	The JPSS-1 Spacecraft produces several application packets which are related to attitude and ephemeris.	474-00448-02- 08_JPSS-DD-Vol-II- Part-8
CrIS Telemetry RDR	CrIS sensor telemetry data	474-00448-02- 03_JPSS-DD-Vol-II- Part-3
CrIS Correction Matrix AUX	The Cross-track Infrared Sounder (CrIS) Correction Matrix PC is applied to spectra as they are ejected from a sliding window. The 4-minute Engineering packet is used as input to create it. It is created at least once an orbit, estimated. The neon lamp measurements provide the measured laser wavelength that is stored in the Engineering packet binary file (CrIS-SDR-ENGPKT- BACKUP-AUX) or CrIS-FS-SDR-ENGPKT- BACKUP-AUX. The corresponding updated CMO matrix is stored in the CMO binary file (CrIS-Correct-Matrix-AUX) or CrIS-FS- Correct-Matrix-AUX. The FSR contains 2736 channels whereas the TSR has 1592.	474-00448-02- 03_JPSS-DD-Vol-II- Part-3
CrIS SDR Engineering Packet Backup AUX	The Cross-track Infrared Sounder (CrIS) SDR Engineering Packet Backup PC provides tunable processing coefficients for use by the algorithm during execution. The coefficients can be modified (tuned) through a configuration control process in response to algorithm, performance, inputs, sensitivity, etc. changes. The TSR and FSR files have the same fields. Some fields have greater array size for FSR. Other fields, such as threshold parameters, have different values.	474-00448-02- 03_JPSS-DD-Vol-II- Part-3
CrIS SDR DQTT	Data Quality Test Table	474-00448-02- 03_JPSS-DD-Vol-II- Part-3
CrIS SDR Processing Coefficients	The Cross-track Infrared Sounder (CrIS) SDR Ephemeral PC provides tunable processing coefficients for use by the algorithm during execution. The coefficients can be modified (tuned) through a configuration control process in response to algorithm, performance, inputs, sensitivity, etc. changes.	474-00448-02- 03_JPSS-DD-Vol-II- Part-3

Table 3.1.1.1-1 CrIS SDR Truncated Spectral Resolution Inputs

Input	Description	Reference Document
CrIS Fill Packet LUT	The CrIS Fill Packet PC contains templates of each of the Earth Scene, Deep Space, and Internal Calibration Target Interferogram packets (APIDs 1315-1395). These templates are used to create "fill" packets that are used to replace packets missing from the CrIS RDR inputs, in order to minimize the effect of missing packets to the CrIS sliding window processing.	474-00448-02- 03_JPSS-DD-Vol-II- Part-3

Table 3.1.1.1-2. CrIS SDR Full Spectral Resolution Inputs

Input	Description	Reference Document
CrIS Science RDR	The RDRs processed by the CrIS SDR algorithm are science RDRs of three types: interferogram packets, 8 s science/calibration packets (SciCalP) and 4min engineering packets (EP). An interferogram packet contains Earth Scene (ES), Deep Space (DS), or Internal Calibration Target (ICT) interferogram measurements. An 8s SciCalP is created every 8 seconds for each scan. It contains calibration data such as ICT and scan baffle temperature measurements. A 4 min EP is created every 4 minutes, or after every 30 scan measurements.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
Spacecraft Diary RDR	The JPSS-1 Spacecraft produces several application packets which are related to attitude and ephemeris.	474-00448-02-08_JPSS- DD-Vol-II-Part-8
CrIS Telemetry RDR	CrIS sensor telemetry data	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS Full Spectrum Correction Matrix AUX	The Cross-track Infrared Sounder (CrIS) Correction Matrix PC is applied to spectra as they are ejected from a sliding window. The 4-minute Engineering packet is used as input to create it. It is created at least once an orbit, estimated. The neon lamp measurements provide the measured laser wavelength that is stored in the Engineering packet binary file (CrIS-SDR-ENGPKT- BACKUP-AUX) or CrIS-FS-SDR-ENGPKT- BACKUP-AUX. The corresponding updated CMO matrix is stored in the CMO binary file (CrIS-Correct-Matrix-AUX) or CrIS-FS- Correct-Matrix-AUX. The FSR contains 2736 channels whereas the TSR has 1592.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS Full Spectrum SDR Engineering Packet Backup AUX	The Cross-track Infrared Sounder (CrIS) SDR Engineering Packet Backup PC provides tunable processing coefficients for use by the algorithm during execution. The coefficients can be modified (tuned) through a configuration control process in response to algorithm, performance, inputs, sensitivity, etc. changes. The TSR and FSR files have the same fields. Some fields have greater array size for FSR. Other fields, such as threshold parameters, have different values.	474-00448-02-03_JPSS- DD-Vol-II-Part-3

Input	Description	Reference Document
CrIS Full Spectrum SDR DQTT	Data Quality Test Table	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS Full Spectrum SDR Processing Coefficients	The Cross-track Infrared Sounder (CrIS) SDR Ephemeral PC provides tunable processing coefficients for use by the algorithm during execution. The coefficients can be modified (tuned) through a configuration control process in response to algorithm, performance, inputs, sensitivity, etc. changes.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS Full Spectrum Fill Packet LUT	The CrIS Fill Packet PC contains templates of each of the Earth Scene, Deep Space, and Internal Calibration Target Interferogram packets (APIDs 1315-1395). These templates are used to create "fill" packets that are used to replace packets missing from the CrIS RDR inputs, in order to minimize the effect of missing packets to the CrIS sliding window processing.	474-00448-02-03_JPSS- DD-Vol-II-Part-3

The inputs to the CrIS SDR Algorithm via the CrIS RDR input consist of three types of CCSDS packets produced by the CrIS sensor. These include:

- 1. Interferogram Packet
 - a. Internal Calibration Target (ICT) Interferogram Packet
 - b. Deep Space (DS) Interferogram Packet
 - c. Earth Scene (ES) Interferogram Packet
- 2. Four Minute Engineering Telemetry Packet
- 3. Eight Second Science/Calibration Telemetry Packet

The contents and formats of these packets are defined in the CrIS Command and Data Dictionary.

Tables 3.1.1.1-3, Table 3.1.1.1-4, and Table 3.1.1.1-5 identify the parameters within the Eight Second Science/Calibration and Four Minute Engineering Telemetry Packets that are monitored throughout processing.

Table 3.1.1.1-3. Parameters Monitored via the Eight Second Science/CalibrationTelemetry Packet

Parameter	Comments	Units
IE CCA Calibration Resistor Temperature (epoch 140) - (refers to 200 msec	40 Readings	°C
epoch)		
Low Range Calibration Resistor (epoch 140)	40 Readings	°C
High Range Calibration Resistor (epoch 140)	40 Readings	°C
ICT Temperature #1 (epoch 140)	40 Readings	°C
ICT Temperature #2 (epoch 140)	40 Readings	°C
Cross Track Servo Error (sample 21, epoch 433)	30 Readings	microradians
In Track Servo Error (sample 21, epoch 433)	30 Readings	microradians
Laser Diode Current (epoch 39)	Single Reading	mAmps
Laser Diode Temperature (epoch 39)	Single Reading	°C
Beamsplitter Temperature #1 (epoch 39)	Single Reading	°C
OMA Structure Input Temperature #1 (epoch 39)	Single Reading	°C
OMA Structure Input Temperature #2 (epoch 39)	Single Reading	°C

Parameter	Comments	Units
SSM Scan Mirror Temperature (epoch 39)	Single Reading	°C
SSM Scan Mirror Baffle Temperature (epoch 39)	Single Reading	°K
Stage 2 Cooler Temperature (epoch 39)	Single Reading	°K
Stage 4 Cooler Temperature (epoch 39)	Single Reading	°K
Stage 1 Cooler Temperature (epoch 39)	Single Reading	°K
Stage 3 Cooler Temperature (epoch 39)	Single Reading	°K
Telescope Temperature #1 (epoch 39)	Single Reading	°C

Table 3.1.1.1-4. Parameters Monitored via the Four Minute Engineering Telemetry Packet

Parameter	Comments	Units
CRC of Four Minute Engineering Telemetry	Used to trigger check of tunable parameters	NA
RDR		
Spectral Calibration Parameters	Used to calculate metrology laser frequency	NA
Laser Pulses Counted Per Sweep	Used to calculate metrology laser frequency	Unitless
Number Of Neon Calibration Sweeps	Used to calculate metrology laser frequency	Unitless
Effective Neon Wavelength	Used to calculate metrology laser frequency	nm
Neon Calibration Time Stamp	Used to calculate metrology laser frequency	ms
Repeat Neon Calibration Interval	Used to calculate metrology laser frequency	ppm
Neon Calibration Data	One sample per Number Of Neon Calibration Sweeps	NA
Starting Count (Sample	One sample per Number Of Neon Calibration Sweeps	unitless
1128)		
Starting Partial Count	One sample per Number Of Neon Calibration Sweeps	unitless
(Sample 1128)		
Fringe Count (Sample	One sample per Number Of Neon Calibration Sweeps	unitless
1128)		
Ending Partial Count	One sample per Number Of Neon Calibration Sweeps	unitless
(Sample 1128)		
Ending Count (Sample	One sample per Number Of Neon Calibration Sweeps	unitless
1128)		

Table 3.1.1.1-5.. Tunable Parameters Provided via the Four Minute Engineering Telemetry RDR

Parameter	Comments	Units
Effective Neon Bulb Wavelength	Used in the computation of the laser frequency using Neon calibration data.	nm
Metrology laser wavelength offset	MW and SW offset from the LW metrology laser wavelength	ppm
ILS curve fit parameters	Used to correct for modulation efficiency variation with OPD	unitless
ILS FOV offset and size parameters	Use to correct off-axis pixel self apodization effects	micro radians
ICT Emissivity	Geometric factor to convert surface emissivity to effective emissivity	unitless
LW ICT Emissivity table	Wavenumber specific effective emissivities	unitless
MW ICT Emissivity table	Wavenumber specific effective emissivities	unitless
SW ICT Emissivity table	Wavenumber specific effective emissivities	unitless
Polarization Calibration	% Polarization difference relative to ICT at a specific wavenumber	unitless
Polarization Wave Numbers	Wavenumbers at which polarization calibration information is provided	cm-1
ICT environment model	Emissivities and view angles of instrument component included in the ICT radiance calculation	Temperature: K; Emissivity: unitless; View angle: degree; Planck function: mw / (m2.sr. cm-1)
ScanBaffleTemperatureBias	Scan baffle temperature correction applied at different spacecraft orbital positions (21 values)	K
Science TLM conversion coefficients	Engineering unit conversion coefficients associated with	unitless

	parameters monitored in eight second science/calibration telemetry RDR	
Science TLM Limits	Limits associated with parameters monitored in eight second science/calibration telemetry RDR	unitless
Mapping Parameters		
SSM crosstrack positions	Angles relative to SSM mounting feet	degree
SSM mirror misalignment	Mirror mount pitch and vaw errors	degree
SSM in-track position	Intrack commanded Nadir offset	degree
SSMR, SSMF, IAR , IFM boresight &	Alignment angles	degree
Time stamp bias	Bias added to interferogram time stamp to account for intrack	ms
1	motion compensation	
CrIS Bit Trim Mask LW	Used to reverse the bit trimming of interferogram packets	digital counts
CrIS Bit Trim Mask MW	Used to reverse the bit trimming of interferogram packets	digital counts
CrIS Bit Trim Mask SW	Used to reverse the bit trimming of interferogram packets	digital counts
LW Data Extraction Information		
Number of A/D samples	Used to reverse the bit trimming of interferogram packets	unitless
Decimation & number of filter taps	Used to reverse the bit trimming of interferogram packets	unitless
MW Data Extraction Information		
Number of A/D samples	Used to reverse the bit trimming of interferogram packets	unitless
Decimation & number of filter taps	Used to reverse the bit trimming of interferogram packets	unitless
SW Data Extraction Information		
Number of A/D samples	Used to reverse the bit trimming of interferogram packets	unitless
Decimation & number of filter taps	Used to reverse the bit trimming of interferogram packets	Unitless
Nonlinearity Correction Parameters		
linearityCorrectionA2Parameters	2nd order IR channel nonlinearity characterization parameter. There are nine linearity correction parameters for each FOV for LWIR, MWIR, and SWIR	1/Volts
linearityCorrectionVinstParameters	Detector preamp output voltage due only from instrument background radiance & detector dark current. There are nine linearity correction vinst parameters for LWIR, MWIR, and SWIR	Volts
linearityCorrectionModEffParameters	Interferometer modulation efficiency. There are nine linearity correction modeff parameters for LWIR, MWIR, and SWIR	Volts
FIR Tailoring	LWIR FIR filter coefficient gain relative to baseline FM1_3 FIR filter coefficients. Excludes gain changes due to bit trim mask changes (LW, MW and SW).	Unitless
PGA Gain Table Map	LWIR, MWIR and SWIR channel electrical gain in Volt/Volt corresponding to PGA (16x3 numbers)	Volt/Volt Config

In addition to the parameters provided through the instrument telemetry Packets, there are many configuration options that modify the processing performed by the operational code. These values are modified via the configuration files provided by DMS. The tunable parameters provided via the CrIS SDR Processing Coefficient Files for truncated and full spectral resolution. See 474-00448-02-03_JPSS-DD-Vol-II-Part-3 for more details.

3.1.1.1.1 Requirements for Input

The primary instrument output (interferogram data) is generated as follows:

- The instrument can perform a new measurement (sweep) every 200 ms: 167 ms for data collection and 33 ms for repositioning.
- A new cycle (scan) is repeated every 8 seconds:
 - o 600 msec slew from ICT to Earth Scene (ES) 1
 - o 200 msec x 30 Earth Scenes
 - 200 msec slew from ES 30 to Deep Space (DS)

- 200 msec x 2 samples at DS (forward and reverse sweeps)
- \circ 400 msec slew from DS to ICT
- 200 msec x 2 samples at ICT (forward and reverse sweeps)
- Each scan is comprised of 918 interferograms: (2 DS + 2 ICT + 30 ES) × 3 bands × 9 detectors / band

Figure 3.1.1.1.1-1. CrIS Measurement Sequence

3.1.1.1.2 Requirements for Applicable Auxiliary/Ancillary and/or Optional Input Data In addition to the interferogram data generated by the CrIS Sensor, there are two additional packets of interest to the SDR algorithm:

- 1. Eight second Science/Calibration Telemetry This data packet contains instrument temperature information required during the calibration process collected during the previous eight seconds of instrument operation. These data packets are transmitted by the instrument at the end of every eight second scan period.
- 2. Four Minute Engineering Telemetry This data packet contains additional information used for interferogram processing, spectral calibration, spatial correction, and geolocation. With the exception of the Neon calibration data contained within this packet, all information is virtually static; however, it can be modified via table upload commands sent to the CrIS sensor. Neon calibration data is updated as programmed and is currently planned for once per orbit. These data packets are transmitted by the instrument at the end of every thirtieth eight second scan period.

3.1.1.2 Outputs

Tables 3.1.1.2-1 and 3.1.1.2-2 list the CrIS SDR algorithm outputs.

Output	Description	Reference Document
CrIS SDR	CrIS is an infrared sounder (Michelson Interferometer) designed to measure scene radiance and calculate the vertical distribution of temperature, moisture, and pressure in the Earth's atmosphere. The CrIS SDR algorithms transform the scene interferograms into fully calibrated, unapodized, spectral information. For the radiance arrays dimensioned with wavenumber, the wavenumber is increasing, and the values are most representative of the wavelength bin center. For arrays dimensioned with "band" [3], the ordering is LW (Long-wave), MW (Middle- wave), SW (Short-wave). Raw data (earth view, internal calibration and space view) are preprocessed, undergo radiometric, spectral, and geometric calibrations, and are quality checked prior to SDR creation. This output is then used in subsequent atmospheric parameter calculations.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS SDR GEO	CrIS SDR Geolocation Data	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS Correction Matrix AUX	The Cross-track Infrared Sounder (CrIS) Correction Matrix PC is applied to spectra as they are ejected from a sliding window. The 4-minute Engineering packet is used as input to create it. It is created at least once an orbit, estimated. The neon lamp measurements provide the measured laser wavelength that is stored in the Engineering packet binary file (CrIS-SDR-ENGPKT- BACKUP-AUX) or CrIS-FS-SDR-ENGPKT- BACKUP-AUX. The corresponding updated CMO matrix is stored in the CMO binary file (CrIS-Correct-Matrix-AUX) or CrIS-FS- Correct-Matrix-AUX. The FSR contains 2736 channels whereas the TSR has 1592.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS SDR Engineering Packet Backup AUX	The Cross-track Infrared Sounder (CrIS) SDR Engineering Packet Backup PC provides tunable processing coefficients for use by the algorithm during execution. The coefficients can be modified (tuned) through a configuration control process in response to algorithm, performance, inputs, sensitivity, etc. changes. The TSR and FSR files have the same fields. Some fields have greater array size for FSR. Other fields, such as threshold parameters, have different values.	474-00448-02-03_JPSS- DD-Vol-II-Part-3
CrIS SDR DQN	Data Quality Notification	474-00448-02-01_JPSS- DD-Vol-II-Part-1

Table 3.1.1.2-1. CrIS Truncated Spectrum SDR Outputs

Output	Description	Reference Document
CrIS Full Spectrum SDR	CrIS is an infrared sounder (Michelson	474-00448-02-03_JPSS-
	Interferometer) designed to measure scene	DD-Vol-II-Part-3
	temperature moisture and pressure in the Earth's	
	atmosphere. The CrIS SDR algorithms transform	
	the scene interferograms into fully calibrated,	
	unapodized, spectral information. For the	
	radiance arrays dimensioned with wavenumber,	
	the wavenumber is increasing, and the values are	
	most representative of the wavelength bin center.	
	ordering is I.W (I ong-wave) MW (Middle-	
	wave), SW (Short-wave).	
	Raw data (earth view, internal calibration and	
	space view) are preprocessed, undergo	
	radiometric, spectral, and geometric calibrations,	
	and are quality checked prior to SDR creation.	
	atmospheric parameter calculations.	
CrIS Full Spectrum SDR	CrIS SDR Geolocation Data	474-00448-02-03 JPSS-
GEO		DD-Vol-II-Part-3
CrIS Full Spectrum	The Cross-track Infrared Sounder (CrIS)	474-00448-02-03_JPSS-
Correction Matrix AUX	Correction Matrix PC is applied to spectra as	DD-Vol-II-Part-3
	they are ejected from a sliding window. The	
	4-minute Engineering packet is used as	
	an orbit, estimated. The neon lamp	
	measurements provide the measured laser	
	wavelength that is stored in the Engineering	
	packet binary file (CrIS-SDR-ENGPKT-	
	BACKUP-AUX) or CrIS-FS-SDR-ENGPK1-	
	CMO matrix is stored in the CMO binary file	
	(CrIS-Correct-Matrix-AUX) or CrIS-FS-	
	Correct-Matrix-AUX. The FSR contains 2736	
	channels whereas the TSR has 1592.	
CrIS Full Spectrum SDR	The Cross-track Infrared Sounder (CrIS)	474-00448-02-03_JPSS-
Engineering Packet	SDR Engineering Packet Backup PC	DD-Vol-II-Part-3
Backup AUX	provides tunable processing coefficients for	
	use by the algorithm during execution. The	
	a configuration control process in response	
	to algorithm, performance, inputs, sensitivity,	
	etc. changes. The TSR and FSR files have	
	the same fields. Some fields have greater	
	array size for FSR. Other fields, such as	
	threshold parameters, have different values.	
CrIS Full Spectrum SDR	Data Quality Notification	474-00448-02-01_JPSS-
DQN		DD-Vol-II-Part-1

Table 3.1.1.2-2. CrIS Full Spectrum SDR Outputs

The CrIS SDR algorithm shall produce unapodized radiances to be compliant with CrIS SDR product requirements. The only problem is that information is lost at the two ends of each of the three CrIS bands due to convolution. This can be avoided, however, by extending the spectral grid of the unapodized radiances.

For CrIS Truncated Spectral Resolution, use the following values:

<edrLwDeltaSigma Default_"0.625000"/> <edrLwMaximumWavenumber Default="1096.250000"/> <edrLwMinimumWavenumber Default="648.750000"/> <edrLwNumberOfPoints Default="717"/> <edrMwDeltaSigma Default="1.250000"/> <edrMwMaximumWavenumber Default="1752.500000"/> <edrMwMinimumWavenumber Default="1207.500000"/> <edrMwNumberOfPoints Default="437"/> <edrSwDeltaSigma Default="2.500000"/> <edrSwMaximumWavenumber Default="2555.000000"/> <edrSwMaximumWavenumber Default="2150.000000"/> <edrSwMaximumWavenumber Default="2150.000000"/> <edrSwNumberOfPoints Default="163"/>

For Truncated Spectral Resolution, the CrIS SDR algorithm outputs unapodized radiances for the following spectral grid:

LWIR Band: a total of 717 bins from 648.75 cm-1 to 1096.25 cm-1 with a spacing of 0.625 cm-1;

MWIR Band: a total of 437 bins from 1207.5 cm-1 to 1752.5 cm-1 with a spacing of 1.25 cm-1; SWIR Band: a total of 163 bins from 2150 cm-1 to 2555 cm-1 with a spacing of 2.5 cm-1.

For CrIS Full Spectral Resolution, use the following values:

<edrLwDeltaSigma Default_"0.625000"/>

<edrLwMaximumWavenumber Default="1096.250000"/> <edrLwMinimumWavenumber Default="648.750000"/> <edrLwNumberOfPoints Default="717"/> <edrMwDeltaSigma Default="1.250000"/> <edrMwMaximumWavenumber Default="1751.2500000"/> <edrMwMinimumWavenumber Default="1208.7500000"/> <edrMwNumberOfPoints Default="869"/> <edrSwDeltaSigma Default="2551.250000"/> <edrSwMaximumWavenumber Default="2551.250000"/> <edrSwMaximumWavenumber Default="2153.750000"/> <edrSwNumberOfPoints Default="637"/>

For Full Spectral Resolution, the CrIS SDR algorithm outputs unapodized radiances for the following spectral grid:

LWIR Band: a total of 717 bins from 648.75 cm-1 to 1096.25 cm-1 with a spacing of 0.625 cm-1;

MWIR Band: a total of 869 bins from 1208.75 cm-1 to 1751.25 cm-1 with a spacing of 0.625 cm-1;

SWIR Band: a total of 637 bins from 2153.75 cm-1 to 2551.25 cm-1 with a spacing of 0.625 cm-1.

Comparing to the original CrIS SDR spectral grid, the new one added two more grid points to the ends of each of the three CrIS bands. With the 12 newly added bins, the total number of bins of the CrIS SDR output radiances has increased from 1305 to 1317.

3.1.2 Algorithm Processing

CrIS SDR processing retrieves the ingest Raw Data Records (RDRs) from DMS. CrIS RDR data in DMS is in CCSDS packet format. The CrIS SDR algorithm is tasked to process a granule of RDR data. In order to do that, it needs to retrieve 15 scans prior to the beginning of the granule and 15 scans after the end of the granule. The first step is to determine the beginning scan in the current granule and then determine the granule IDs for the RDR data on both sides of the granule. Once the RDR files have been retrieved and the time stamp for the beginning scan determined, a structure of packet pointers is populated with pointers to the actual packets in the RDR files based on scans and time. This structure of packet pointers is passed into the CrIS SDR algorithm which parses and processes the packets. The RDR data are created as heap items to allow the RDR data in heap memory to be modified if needed. When CrIS full resolution data is processed, in Truncated Spectral Resolution (TSR) SDR processing mode, a truncation module is executed before any processing is done to truncate the interferograms for processing by the algorithm, otherwise, i.e., in Full Spectrum Resolution (FSR) SDR processing mode. Engineering packet values are then updated to reflect the truncated trim table values. Common geolocation routines are used to get the location by providing the exit vector for that sample so that geolocation information can be updated. The specific common geolocation routines used, here, are satPosAtt() to locate the ephemeris and attitude for the specific observation time, and ellipIntersect() to calculate the geodetic latitude and longitude and terrain height for the given sensor exit vector and ephemeris and attitude. The exit vectors are calculated with

$$E_{x} = -\sin(P_{LOS})$$
$$E_{y} = \cos(P_{LOS}) * \sin(R_{LOS})$$
$$E_{z} = \cos(P_{LOS}) * \cos(R_{LOS})$$

Where and are the line-of-sight roll and pitch and is the exit vector.

3.1.2.1 Main Module - SDR Generator Application

This paragraph outlines the major software contributors used to process CrIS data. Detailed design relationships of these classes can be obtained from the design model. Detailed implementation details are documented in the source with in-line comments. Table 3.1.2.1-1 lists some important classes used during processing.

Name	Туре	Initialization	Description	
CalibratedSpectra	Class	Instantiation	Specialization of Spectra which implements the complex calibration interface	
CCSDSFormat	Class	Singleton	Utility for packaging and extraction of CCSDS primary and secondary headers	
CorrectionMatrix	Class	Instantiation	Container for the spatial corrections that comprise the CMO	
EngineeringCalibrationRecord	Class	Specialization	Implements the abstract CalibrationRecord for Algorithm specific 4min values	
Interferogram	Class	Instantiation	Container for organizing video data	
ScienceCalibrationRecord	Class	Specialization	Implements the abstract CalibrationRecord for Algorithm specific 8sec values	

 Table 3.1.2.1-1.
 Some Important Classes Used During Processing

Name	Туре	Initialization	Description
ScienceDataProcessor	Class	Instantiation	Central engine for Algorithm behavior
Spectra	Class	Abstract	Interface container
SpectraManager	Class	Instantiation	Collection of Spectra used in window average
TelemetryProcessor	Class	Singleton	Extracts binary instrument data defined by config file
TemperatureHistory	Class	Instantiation	Collection responsible for min, max, avg temperature
VideoData	Class	Aggregation	Implements TelemetryProcessor's bit-trim behavior

3.1.2.2 Class CalibratedSpectra

This class provides complex calibration and applies corrections to the instance spectra.

Table 3.1.2.2.1-1 shows the CalibratedSpectra attributes and Table 3-10 shows the CalibratedSpectra operations.

3.1.2.2.1 CalibratedSpectra Attributes

Table 3.1.2.2.1-1.	CalibratedSpe	etra Attributes
	Campracoupper	

Name	Туре	Description
VERSION_NUMBER	primitive unsigned short int UInt16	Collection of version number.

3.1.2.2.2 CalibratedSpectra Operations

Name	Return	Parameters		
Applies a complex calibr	ation to the instance spectra. The col	d contribution is added only when coldTarget Temp is !=NULL		
calibrate	primitive bool	Class Spectra*	hotReference	
		Class Spectra*	coldReference	
		Class Spectra*	hotTargetTemp	
		Class Spectra*	coldTragetTemp	
		BOOST::vector <float64>*</float64>	calibrationMatrix	
Applies a complex calibr	ation to the instance spectra. The col	d contribution is added only when coldTa	rget Temp is !=NULL	
(Overloaded function)				
calibrate	primitive bool	Class Spectra*	hotReference	
		Class Spectra*	coldReference	
		Class Spectra*	hotTargetTemp	
		Class Spectra*	coldTragetTemp	
		BOOST::vector <float64>&</float64>	theFirGainRealBin	
		BOOST::matrix <float64>*</float64>	calibrationMatrix	
Applies a bin by bin corr	ection			
correct	primitive bool	Class Spectra*	correctionSpectra	
Return linear phase shift	when fringe count error exist.			
correctFringeCountErr	Class	Class	linearPhaseShift	
or	BOOST::vector <std::complex<fl< td=""><td>BOOST::vector<std::complex<float6< td=""><td></td></std::complex<float6<></td></std::complex<fl<>	BOOST::vector <std::complex<float6< td=""><td></td></std::complex<float6<>		
	oat64>&	4>>&		
Fringe count errors are c	computed and returned			
detectReferenceSpectra	Float64	Class Spectra*	hotReference	
FringeCountError				
		Class Spectra*	coldReference	
Fringe count errors are computed and returned				
detectESFringeCountErro	or Int32	Class Spectra*	hotReference	

Table 3.1.2.2.2-1. CalibratedSpectra Operations

Name		Return	Parameters	
rtaine		Return	Class Spectra*	coldReference
			Class Spectra*	rawEarthSpectra
			Class Spectra*	hotTargetTemp
			Class Spectra*	coldTargetTemp
Sync ICT and DS validat	te tests		· · · · ·	
FCE ICT DS sync vali	idateTests	bool	BOOST::vector <float64>&</float64>	fitIndex
			UInt32	binSize
			Float64	linearPhaseSlope
			Float64	linearPhaseOrdinate
			BOOST::vector <float64>&</float64>	fitSigma
			Float64	fringeCount
Prepare Phase Linear Re	egression			
preparePhase_LinearReg	gression	void	BOOST::vector <float64>&</float64>	linearPhase
			enum Band::Wavelength	theBand
			FCE LIMIT	threshold type
			BOOST::vector <float64>&</float64>	fitIndex
			BOOST::vector <float64>&</float64>	fitSigma
Estimate NEdN				
estimateNEdN	Bool		Class Spectra*	theSlope
			Class Spectra*	theIntercept
			typedef unsigned int UInt32	userNumberOfPoints
			typedef double Float64	userMinWavenumber
			typedef double Float64	userDeltaSigma
Shifts the imaginary com	ponent of pha	se to align the real com	ponent with the reference spectra.	_
adjustPhase	primitive vo	oid	Class	linearPhaseShift
			BOOST::vector <std::complex<float6< td=""><td></td></std::complex<float6<>	
			4>>&	
Estimate NEdN				
estimateNEdN	Bool		Class Spectra*	theSlope
			Class Spectra*	theIntercept
			typedef unsigned int UInt32	userNumberOfPoints
			typedet double Float64	userMinWavenumber
			typedef double Float64	userDeltaSigma

3.1.2.3 CCSDSFormat

This class implements the CommonMessageFormat for CCSDS packetization. Table 3.1.2.3.1-1 shows the CCSDSFormat attributes and Table 3.1.2.3.2-1 shows the CCSDSFormat operations.

3.1.2.3.1 CCSDSFormat Attributes

Table 5.1.2.5.1-1. CCSDSFormat Operations			
Name	Туре	Description	
thePrimaryHeader	Class CcsdsPrimaryHeader	Collection of routing a packet and its data.	
theSecondaryHeader	Class CcsdsSecondaryHeader	Collection of routing the timestamp portion of a CCSDS header	

Table 3.1.2.3.1-1. CCSDSFormat Operations

3.1.2.3.2 CCSDSFormat Operations

Table 3.1.2.3.2-1.	CCSDSFormat Operations
--------------------	-------------------------------

Name	Return		Parameters	
Populates the primary and secondary headers based on the data at the offset of startingLocation.				
unpack	typedef int	Class Octets	&theData	

Name	Return	Parameters	
	Int32		
		typedef unsigned int UInt32	&startingLocation

3.1.2.4 Class CorrectionMatrix

This class is responsible for implementing a Correction Matrix that is applied to each spectra. Table 3.1.2.4.1-1 shows the CorrectionMatrix attributes and Table 3.1.2.4.2-1 shows the CorrectionMatrix operations.

3.1.2.4.1 CorrectionMatrix Attributes

Name	Туре	Description
size	typedef unsigned int UInt32	Size of Correction Matrix
childTable[]	Class CorrectionTable*	Collection of child tables
Invsa_calibrationMatrix	Class BOOST::matrix <float64></float64>	Collection of inverse self-apodization calibration matrix
lastUpdateTime	typedef struct SYSTEMTIME	Collection of last update time
AlgorithmParameter	Class SDR_AlgorithmnParameter	Collection of SDR algorithm parameters
CorrectionParameter	Class SDR_CorrectionParam	Collection of SDR correction parameters
InstrumentCharacteristic	Class CrIS_InstrumentCharacteristics	Collection of CrIS instrument parameters
maxPathDifferential[]	typedef double Float64	Collection of maximum path difference
correctionTableDeltaSigma[]	typedef double Float64	Collection of table delta sigma
correctionTableLowestWavenum ber[]	typedef double Float64	Collection of table lowest wavenumber
instrumentDeltaSigma[]	typedef double Float64	Collection of instrument delta sigma
instrumentLowestWavenumber[]		Collection of instrument lowest wavenumber
userDeltaSigma[]	typedef double Float64	Collection of user delta sigma
userLowestWavenumber[]	typedef double Float64	Collection of user lowest wavenumber

Table 3.1.2.4.1-1. CorrectionMatrix Attributes

3.1.2.4.2 CorrectionMatrix Operations

Name	Return	Parameters		
Rebuilds child tables for calibration matrix construction				
buildILSCorrectionTable	typedef int	Class	theEngCalRec	
	Int32	EngineeringCalibrationRecord&		
		enum SceneElement	theFOV	
		enum Band::Wavelength	theBand	
Builds self-apodization table				
buildSelfApodization Table	primitive	Class	theEngCalRec	
_	bool	EngineeringCalibrationRecord&		
		enum SceneElement	theFov	
		enum Band::Wavelength	theBand	
Builds Residual ILS Table				
buildResidual_ILS_Table	primitive	Class EngineeringCalibrationRecord&	theEngCalRec	
	bool			
enum SceneElement theFOV				

Table 3.1.2.4.2-1. CorrectionMatrix Operations

Name	Return	Parameters		
		enum Band::Wavelength	theBand	
Calculates and return the inv	erse SA calibrati	on matrix.		
matrixProduct	boost::matrix <float64></float64>	boost::matrix <float64></float64>	&A	
		boost::matrix <float64></float64>	&В	
		boost::matrix <float64></float64>	& <i>C</i>	
Resizes the correction and ch	ild tables to new	dimension.		
setSize	primitive	typedef unsigned int UInt32	newDimension	
	void			
Creates a comma separated s	tring containing	values from the calibrationMatrix		
toString	primitive	n/a	n/a	
	string			
Serializes the correction matr	rix with user delt	aSigma.		
serializeCMO	primitive	Class cris_oarchive&	ar	
	void			
		enum Band::Wavelength	theBand	
Serializes the correction matrix with user deltaSigma.				
serializeCMO	primitive	Class cris_iarchive&	ar	
	void			
enum Band::Wavelength theBand				

3.1.2.5 Class EngineeringCalibrationRecord

This class is a parent class to each of the Engineering Calibration Record subcategories. Table 3.1.2.5.1-1 shows the EngineeringCalibrationRecord attributes and Table 3.1.2.5.2-1 shows the EngineeringCalibrationRecord operations.

3.1.2.5.1 EngineeringCalibrationRecord Attributes

Table 5.1.2.5.1-1. Engineering Canbration Record Attributes				
Name	Туре	Description		
ietTime	typedef long long Int64	IET time		
computedWavelengthRejectionT hreshold	typedef unsigned int UInt32	Computed wavelength rejection threshold		
rejectedWavelengthsRatio	typedef double Float64	Rejected wavelength ratio		
averageMetrologyWavelength	typedef double Float64	Averaged metrology wavelength		
engLaserDiodeTemperature	typedef double Float64	Laser diode temperature		
engLaserDiodeCurrent	typedef double Float64	Laser diode current		
laserDiodeWavelengthOrigin	enum LaserWavelengthSource	Original laser diode wavelength		
ilsParams	typeded struct ILS_Parameters	Collection of ILS parameters		
ilsOrigin	enum IIsOriginSource	Collection of ILS original source		
theEngCalRec_ICTEmissivityPar ameters	Class EngCalRec_ICTEmissivityPara meters	Collection of engineering ICT emissivity parameters		
theEngCalRec_ILSCurveFitPara meters	Class EngCalRec_ILSCurveFitParam eters	Collection of ILS curve fit parameters		
theEngCalRec_ILSFOVParamet ers	Class EngCalRec_ILSFOVParameter s	Collection of ILS fov parameters		
theEngCalRec_ICTEnvironmenta IModel	Class EngCalRec_ICTEnvironmental Model	Collection of ICT environmental model		

Table 3.1.2.5.1-1. EngineeringCalibrationRecord Attributes

Name	Туре	Description
theEngCalRec_ScienceTelemetr yConversionCoefficients	Class EngCalRec_ScienceTelemetry ConversionCoefficients	Collection of science telemetry conversion coefficients
theEngCalRec_PolarizationCalib rationWavenumbers	Class EngCalRec_PolarizationCalibrat ionWavenumbers	Collection of polarization calibration wavenumbers
theEngCalRec_LaserMetrologyIn fo	Class EngCalRec_LaserMetrologyInfo	Collection of laser metrology information
theEngCalRec_NeonCalInfo;	Class EngCalRec_NeonCalInfo	Collection of neon calibration information
theEngCalRec_ScienceTelemetr yLimits	Class EngCalRec_ScienceTelemetryL imits	Collection of science telemetry limits
theEngCalRec_PitchRollYawInfo	Class EngCalRec_PitchRollYawInfo	Collection of pitch, roll and yaw information
theEngCalRec_LinearityErrorPar ameters	Class EngCalRec_LinearityErrorPara meters	Collection of linearity error parameters
theEngCalRec_ExtractionRecord	Class EngCalRec ExtractionRecord	Trim table and extraction record values
losInSSMF[]	Class BOOST::vector <float64></float64>	Collection of pitch and yaw misalignments between interferometer and scan mechanism
normalRMF	Class BOOST::vector <float64></float64>	Collection of mirror normal to SSM mirror in RMF coordinate system
sbfToSSMFMatrix	Class BOOST::vector <float64></float64>	Collection of transformation from SBF to SSMF
lastCheckSumValue	typedef int Int32	Last check sum value
packetVersionNumber	typedef int Int32	Packet version number

3.1.2.5.2 EngineeringCalibrationRecord Operations

Table 3.1.2.5.2-1. EngineeringCalibrationRecord Operations

Name	Return	Paramete	er		
Refreshes data					
refreshData	primitive bool	typedef unsigned short int UInt16	theApid		
		class CCSDSFormat*	the TelemetryFormat		
Refreshes data (Overloaded fi	unction)				
refreshData	primitive bool	typedef unsigned short int UInt16	theApid		
class CCSDSFormat* the TelemetryForm					
CalibrationOrder theOrder					
calculates metrology waveleng	gth				
calculateMetrologyWavelengt	h primitive void	n/a	n/a		
Loads the values from the eng	ineering calibration record				
serialize	primitive void	Class cris_iarchive	&ar		
		Class std::ostringstream stringstream	&oss		
Initializes the scene selection	Initializes the scene selection module frame (SSMF) to spacecraft body frame (SBF) transformation operator.				
initializeGeometricCalibration	n primitive void	n/a	n/a		
Computes rotation matrix around Y axis					

Name	Return	Parameter	
rotationMatrixY	Class	typedef double Float64	thePitch
	BOOST::matrix <float64></float64>		
Compute rotation matrix around X axis			
rotationMatrixX	Class	typedef double Float64	theRoll
	BOOST::matrix <float64></float64>		
Computes rotation matrix around	l Z axis.		
rotationMatrixZ	Class	typedef double Float64	theYaw
	BOOST::matrix <float64></float64>		

3.1.2.6 Class Interferogram

This class is responsible for extracting interferogram data from the telemetry processor. Each interferogram consists of a vector of real parts and a vector of imaginary parts. Table 3.1.2.6.1-1 shows the Interferogram attributes and Table 3.1.2.6.2-1 shows the Interferogram operations.

3.1.2.6.1 Interferogram Attributes

Namo					
INAILIE	туре	Description			
realSample	Class	Collection of real parts			
	BOOST::vector <float64>*</float64>				
imaginarySample	Class	Collection of imaginary parts			
	BOOST::vector <float64>*</float64>				
RDR_Status	typedef struct	Collection of raw data status			
_	RawDataRecordStatusRegister				
status	typedef unsigned int UInt32	Status			
channel	typedef unsigned int UInt32	Channel number			
theScene	enum FieldOfRegard	Actual field of regard reported in			
		interferogram			
porchSwingDirection	enum SweepDirection	Actual porch swing direction reported in			
		interferogram			
spectralBand	enum Band::Wavelength	Actual band reported in interferogram			
fieldOfView	enum SceneElement	Actual field of view reported in			
		interferogram			

Table 3.1.2.6.1-1. Interferogram Attributes

3.1.2.6.2 Interferogram Operations

Table 3.1.2.6.2-1. Interferogram Operations

Name	Return	Parameters			
Adds an interferogram to the current interferogram.					
operator+	primitive void	Class Interferogram&	rightOperand		
subtracts an interferogram from	the current interferogram.				
operator-	primitive void	Class Interferogram&	rightOperand		
Divides each element of this interferogram by a specified number.					
operator/	primitive void	typedef double Float64	factor		
Copies all data from source interferogram.					
operator=	Class Interferogram&	Class Interferogram&	source		
Outputs information of the current interferogram.					
operator<<	Class ostream&	Class ostream&	outStream		
		Class Interferogram&	i		
returns data of the specified type from the interferogram.					

Name	Return	Parameters		
getSamples	Class BOOST::vector <float64>&</float64>	enum Complex	Real or imaginary samples	
Computes deep space symmetr	у.			
computeDeepSpaceSymmetry	typedef double Float64	Class Interferogram&	forwardDS	
		Class Interferogram&	reverseDS	
References to the root of the complex squares.				
getMagnitude	Class BOOST::vector <float64>&</float64>	n/a	n/a	
Return the state f the missing data flag				
getMissingData	Bool	n/a	n/a	
Set the state of the missing data flag				
setMissingData	Void	n/a	n/a	
Apply apodization function to apodize the interferogram				
apodize_interferogram	Void	BOOST::vector <float64>&</float64>	apodization	

3.1.2.7 Class TemperatureHistory

This class is a container for temperatures gathered from the data. Table 3.1.2.7.1-1 shows the temperatureHistory attributes and Table 3.1.2.7.2-1 shows the temperatureHistory operations.

3.1.2.7.1 TemperatureHistory Attributes

Name	Туре	Description		
windowSize_	typedef int Int32	Moving average window size		
historicalWindow_	Class vector <calrecord*></calrecord*>	A vector that contains average temperatures		
minTemperature_	typedef double Float64	Minimum temperature		
maxTemperature	typedef double Float64	Maximum temperature		
median_b	typedef double Float64	Median B		
median_e	typedef double Float64	Median E		
median_m	typedef double Float64	Median M		

Table 3.1.2.7.1.1 Temperature History Attributes

3.1.2.7.2 TemperatureHistory Operations

Table 3.1.2.7.2-1. Temperature History Operations			
Name	Return		Parameters
Removes all records in the tem	perature history w	/indow.	
clearHistory	primitive void	n/a	n/a
Sets the window size for a temp	perature window.		
setWindowSize	primitive void	typedef int Int32	newSize
Returns a temperature at any g	iven position.		
getTemperature	typedef double Float64	typedef int Int32	position
Adds the current average tempe	erature to the win	dow if a temperature is no	ot supplied.
addTemperature	typedef double Float64	n/a	n/a
Adds temperature to a temperature window.			
addTemperature	typedef double	typedef double Float64	newTemp

Table 212721 T . TI:a4 \mathbf{n} ..

Name	Return		Parameters	
	Float64			
		typedef struct CrisSdrHeapDataType	*algDataPtr	
		typedef unsigned int UInt32	scanldx	
		typedef int Int32	ictTempType	
Calculates an average of a tem	perature window.			
calculateAverageTemperature	typedef double Float64	n/a	n/a	
returns the number of valid tem	peratures in temp	o history window		
getValidCount	typedef int Int32	n/a	n/a	
Removes a temperature record from the temperature window.				
removeTemperature	primitive bool	n/a	n/a	
Update ICT				
updateICT	void	CrisSdrAlgDataType	algDataPtr	
		typedef int Int32	scanldx	
		typedef int Int32	ictTempType	
Calculate Median Thermal Tem	p Drift			
medianThermalTempDrift	void	n/a	n/a	

3.1.2.8 Class ScienceDataProcessor

This class is responsible for processing the CrIS SDR science data. Table 3.1.2.8.1-1 shows the ScienceDataProcessor attributes and Table 3.1.2.8.2-1 shows the ScienceDataprocessor operations.

3.1.2.8.1 ScienceDataProcessor Attributes

Table 3.1.2.8.1-1 shows the science data processor attributes. This class instantiates the Planck radiation constants for the Planck Function. C_1 requires at least five extra points of precision. This extra amount of precision also ensures better accuracy in Planck function calculations.

Name		Туре	Description
correctionTable[][] Class CorrectionMatrix		Class CorrectionMatrix	Collection of correction matrix tables
resamplingMatrix[]		BOOST::matrix <float64></float64>	Resampled Matrix
resampling_laserwa	velengt	Float64	Sampled Laser Wavelength
h			
resamplingMatrix[]		BOOST::matrix <float64></float64>	Resampled Matrix
postFilter[]	boost::n	umeric::ublas::banded_matrix <float64< td=""><td>Post filter Matrix</td></float64<>	Post filter Matrix
	, boost::	numeric::ublas::column_major>	
apodizationMatrix[]		BOOST::matrix <float64></float64>	Apodization Matrix
calibrationmatrix [][]		BOOST::matrix <float64></float64>	Calibration Matrix
engPacketCount typedet		typedef int Int32	Engineering packet count
*DMS_Data_Inputs ty		typedef struct CrisSdrAlgDataType	Collection of DMS input parameters
windowSize typedef int Int32		typedef int Int32	Window size
processingPeriod		Class SpectraManager	Collection of spectra currently used in the moving window average.
polarizationCorrectionCurve Class Spectra*		Class Spectra*	Collection of polarization correction curves
CalibrationParameter typedef struct CalibrationParam		typedef struct CalibrationParam	Collection of calibration parameters
CorrectionParameter ty		typedef struct SDR_CorrectionParam	Collection of SDR correction parameters

InstrumentCharacteristic	Class CrIS_InstrumentCharacteristics	Collection of CrIS instrument characteristics
TestEnvironmentParameter	typedef struct	Collection of CrIS environment parameters
ConoralDaramator	typedef struct	Collection of CrIS general parameters
GeneralFarameter	SDR GeneralParameters	Collection of Cris general parameters
AlgorithmParameter	struct SDR AlgorithmnParameter	Collection of SDR algorithm parameters
maxPathDifferential[1	typedef double Float64	Max path differential
deltaSigma[]	typedef double Float64	Delta sigma
lowestWavenumber[]	typedef double Float64	Lowest wavenumber
validCalTargetDuration		Collection of valid calibration target time
validCalTargetTolerence		Collection of valid calibration target time
validColdTargetDuration		Collection of valid cold target time
validColdTargetToloropco		Collection of valid cold target time
validColdTargetTolerence		Collection of valid bot target time
		Collection of valid hot target time
validHotTargetTolerence		Collection of valid not target tolerance
sequenceCount[][][][]	typedef int int32	Collection of spectra sequence counts
	typedef int Int32	Collection of spectra science counts
targetCount[][][][]	typedef int Int32	Collection of spectra target counts
invalidInterferogramCount[][]	typedef int Int32	Collection of invalid interferogram counts
invalidSpectraCount[][]	typedef int Int32	Collection of invalid spectra counts
currentExternalCalFileLine	primitive string	Current external cal file line
theEngineeringCalibrationR ecord	Class EngineeringCalibrationRecord	Collection of engineering calibration record
thell SParametersRecord	Class II SParametersRecord	Collection of II S Parameters record
theTargetTempCalibrationR	Class TargetTempCalibrationRecord	Collection of target temperature calibration
ecord		record
theScienceCalibrationRecor	Class ScienceCalibrationRecord	Collection of science calibration record
plankConstC1	typedef double Float64	Planck function constant value
plankConstC2	typedef double Float64	Planck function constant value
appDirectory	primitive string	Directory name
calculateDesiredBandCente r	primitive void	Calculate desired band center
SCIENCE_CALIBRATION_ FRAME TYPE	typedef unsigned int UInt32	Science calibration frame type
ENGINEERING_CALIBRA	typedef unsigned int UInt32	Engineering calibration frame type
requiresPhaseSync[][][]	primitive bool	Collection of required phase synchronization
syncAttemptCount[][][]	typedef int Int32	Collection of attempt synchronization count
totalActiveThreads	typedef int Int32	Total active threads
threadFOVmap[]	typedef int Int32	Thread FOV
earthScenefceDetectionCo	primitive bool	Collection of earth scene FCF detection
mplete[]		completion
interferogramApodizationTa ble[]	BOOST::vector < Float64>	Interferogram Apodization Table.
earthScenefceDetectionCo mplete[]	primitive bool	Flag indicating earth scene FCE detection complete.
referenceHotSceneReceive d	Int32	Count of hot reference received after psd == 1.
referenceSceneReceived[][]	primitive bool	Collection of reference scene received
referenceSceneSync[][][]	primitive bool	Collection of reference scene synchronization

initialCorrectionReady	primitive bool	Initial correction ready flag
FIR GAIN[1	Class UncalibratedSpectra	Collection of FIR gain
shiftFactor[]	typedef double Float64	Array of shift factors
appShiftFactorFlag	primitive bool	Flag indicating to apply the shift factor.
scanldx	typedef unsigned int UInt32	Scan index
 numCMOBuilds	typedef unsigned short UInt16	Number of CMO builds
numEngBuilds_	typedef unsigned short UInt16	Number of Engineer Packet builds
taskedSequentially_	primitive bool	Task sequential flag
scanWhichCausedCMORe build	typedef signed short Int16	Scan number that causes to rebuild CMO
scanWhichCausedEngReb uild	typedef signed short Int16	Scan number that causes to rebuild Engineer Packet
minNpCrossingTime_	SYSTEMTIME	Min North Pole Crossing time.
maxNpCrossingTime_	SYSTEMTIME	Max North Pole Crossing time.
orbitMsgThrottle_	std::map <int32, bool=""></int32,>	Map of scan index to debug message
		reported of Polar crossing.
currentDSfwd	Class Interferogram	Current DS forward interferogram
currentDSrev	Class Interferogram	Current DS reverse interferogram
currentDSfwd_p	primitive bool	Current DS forward flag
currentDSrev_p	primitive bool	Current DS reverse flag
engPkt_Loaded	primitive bool	EngPkt loaded flag
ilsCorrection_Loaded	primitive bool	ILS Correction Matrix loaded flag
firstEngPkt	primitive book	First EngPkt flag
engPktOutputTimeStep	typedef int Int64	Step to output EngPkt
forDS_reals[][][]	Class BOOST::vector < Float64>	Collection of forward DS real parts
forDS_imags[][][]	Class BOOST::vector < Float64>	Collection of forward DS imaginary parts
revDS_reals[][][]	Class BOOST::vector < Float64>	Collection of reverse DS real parts
revDS_imags[][][]	Class BOOST::vector < Float64>	Collection of reverse DS imaginary parts

3.1.2.8.2 ScienceDataProcessor Operations

Table 3.1.2.8.2-1 shows the science data processor operations.

Table 3.1.2.8.2-1.	ScienceDataProcessor	Operations
--------------------	----------------------	-------------------

Name	Return	Para	meter	
Cleans up of ScienceDataProcessor data f	for next dispa	tch.		
cleanup	primitive	n/a		n/a
	void			
Populates high access frequency domain a	lata.			
calculateWavenumberBinSpacing	primitive	enum Band::Wavelength		theBand
	void			
Calculates the post calibration table. This	calculation is	s only band specific.		
buildPostCalibrationTable	primitive	enum Band::Wavelength theBand		theBand
	bool			
Calculates the post calibration table. This	calculation is	s only band specific.		
buildPostCalibrationTable_raisedCos	primitive	enum Band::Wavelength theBand		theBand
	bool			
Calculates Resampling table. This calcula	tion is only be	and specific.		
buildResamplingTable	primitive	Float64 lowestWavenumberFrom		stWavenumberFrom
bool				
		Float64	delta	SigmaFrom
		Float64	lowes	stWavenumberTo
		Float64	delta	SigmaTo
		UInt32	bigNt	0
BOOST::matrix <float64> rMatrix</float64>				ix
Calculates Resampling table. This calculation is only band specific.				

Check the JPSS MIS Server at <u>https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm</u> to verify that this is the correct version prior to use.

Name	Return	Parameter	
buildResamplingTable	primitive bool	enum Band::Wavelength	theBand
Compute the Max Path Difference of the se	ampled inter	ferogams.	
computeMaxPathDifference	Float64	enum Band::Wavelength	theBand
		UInt32	interferogramSize
Calculates the user apodization table. This	calculation	is only band specific.	
buildUserApodizationTable	primitive bool	enum Band::Wavelength	theBand
Holds the intelligence to route any RDR pe	acket to assis	stant class processing.	
processRawDataRecord	Class Spectra*	n/a	n/a
Reads external environment data from a fil	le.		
processEnvironmentalData	primitive bool	typedef struct SYSTEMTIME&	theSpectraFrameTime
Builds polarization curve.			
buildPolarizationCurve	primitive void	Class Spectra*	newSpectra
		enum FiledOfRegard	theScene
		enum Bans::Wavelength	theband
Creates and adds a new spectrum to the sp	pectrasliding	window. Reference spectra are simple	y returned.
AddSpectra	Class Spectra*	Class Spectra*	newSpectra
Builds each child table for every band and	fov.		
refreshCorrectionMatrix	primitive int	primitive bool	isloading
Refreshes the self-apodization correction r	natrix		·
refresh_Invsa_CorrectionMatrix	primitive int	primitive bool	isloading
Multiplies child correction table to calcula	te the final o	calibration matrix.	
calculateCalibrationMatrix	primitive void	n/a	n/a
Combines requested corrections		I	
combineRequestedCorrections	typedef unsigned int UInt32	typedef unsigned int UInt32	requestedFOV
Updates correction matrix parameters from	n configurat	tion file.	·
updateCorrectionmatrixParameters	primitive void	n/a	n/a
Checks if there is a missing sciCal pkt in the	he last scan d	of the moving window.	
checkICT_Status	void	typedef int Int32	scanldx
		typedef struct CrisSdrAlgDataType*	algDataPtr
Calculates the hot radiance.			
calculateHotRadiance	Class Spectra*	enum SceneElement	theFOV
		enum Band::Wavelength	theBand
Calculates the cold radiance.			
calculateColdRadiance	Class Spectra*	enum SceneElement	theFOV
		enum Band::Wavelength	theBand
Sets the window size base on the spectral c	calibration m	nethod.	
setSpectralCalibrationMethod	primitive void	enum SpectralCalibrationMethod	newMethod
Removes a spectrum from the sliding window without adding a spectrum.			
flushWindow	Class Spectra*	enum SceneElement	fov

Name	Return	Parameter		
		enum Band::Wavelength	band	
		enum FieldOfRegard	scene	
		enum SweepDirection	psd	
Processes Earth Scene spectra according a	to configurat	tion parameters. Calibration, correcti	on and validity are	
processSpectra	Class	Class Spectra*	newSpectra	
	Spectra*			
Batch Earth Scene Fringe Count Error.		1	1	
batchEarthSceneFCE	bool	Class Spectra*	newSpectra	
		Class Spectra*	rawSpectra	
		CrisSdrCoefficients*	ctgParmsPtr	
	word	Class Spectro*	nouencetre	
	Volu	Class Spectra*	hetPofSpectra	
		Class Spectra*		
		SceneFlement*	oldEOV	
		Enum Band::Wavelength	oldBand	
Monitors the laser diode to determine if th	e CMO need	ls to be undated This method also upo	late the SDR Monitored	
Laser Wavelength and SDR Spectral Resa	npling laser	Wavelength.		
moniterLaserDiode	primitive	class Spectra*	theSpectra	
	bool			
Determines if the laser wavelength needs t	o be updated	l and updates if needed.		
monitorLaserWavelength	primitive	Class Spectra*	theSpectra	
	bool			
Propagates temporal window size to assist	ant classes.			
setWindowSize	primitive	primitive int	newSize	
	void			
Propagates temporal window size to assist	ant classes.		(<u>o</u> ;	
declareWindowSize	void	typedef unsigned int Ulnt32	referenceSize	
		typedef unsigned int UInt32	targetTempSize	
		typedef unsigned int UInt32	CalibrationSize	
Loads each correction matrix from a DMS				
	primitive bool	n/a	n/a	
Loads EngPkt from a DMS		1	1	
LoadEngPkt	primitive	n/a	n/a	
	bool	• 1 • 11 1 ·		
Calculates desired band center and config	ures spectra	's desired band center.		
calculateDesiredBandCenter	void	n/a	n/a	
Applies the CMO to a spectrum.				
applySpectralCorrection	primitive void	Class Spectra*	newSpectra	
		enum SceneElement	theFov	
		enum Band::Wavelength	theBand	
Saves serialized CMO. The values are from	n correction	matrix class serialized.		
saveSerializedCorrectionMatrix	primitive void	n/a	n/a	
Write A-min engineering packet to DMS				
saveSerializedEngPkt	nrimitive	n/a	n/a	
	void		n/u	
Loads serialized CMO from DMS and pop	ulates corre	ction matrix class.		
loadSerializedCorrectionmatrixFromDM	primitive	n/a	n/a	
S Commutan field of views line of sight i		l fram a		
Computes field of views line-of-sight in spe	icecraft bod	y jrame.		

Name	Return	Parameter	
calculateGeometricCalibration	Class	Class Spectra*	newSpectra
	Spectra*	Ĩ	Ĩ
Refreshes a spectrum time from telemetry a	lata.		
refreshTime	primitive	Class CCSDSFormat*	theTelemetryFormat
	void		
Synchronizes all windows based on referen	ice spectra s	equence counts and updates sequence	counts.
syncWindows	primitive	n/a	n/a
	void		
Calls the Spectra manager's batchReferenceFCE which does fringe count detection and correction.			rection.
launchBatchreferenceDetect	primitive	Class	spectraType
	void	SpectraManager::RefernceSpectra	
		enum SweepDirection	thePSD
Interpolates a subset such that individual of	ffset values	areavailable for each 8 seconds scan	period.
buildBaffleTemperatureOffset	primitive	Class BOOST::vector <float32>&</float32>	source
	void		
		typedef int int32	orbitDuration
Calculates the gain introduced by FIR Filter.			
buildFirFilterGainTable	primitive	enum Band::Wavelength	requestdBand
	void		
		typedef int int32	foldindex

3.1.2.9 Class SpectraManager

This class is responsible for each Spectra currently used in the moving window average. Table 3.1.2.9.1-1 shows the SpectraManager attributes and Table 3.1.2.9.2-1 shows the SpectraManager operations.

3.1.2.9.1 SpectraManager Attributes

Name	Туре	Description
earthSceneTemp_Q[][][]	Class BOOST::vector <std::complex<f loat64> ></std::complex<f 	Collection of deep space spectra
hotColdDiff[][][]	Class BOOST::vector <std::complex<f loat64> ></std::complex<f 	Collection of differences between hot and col spectra
windowSize	typedef int Int32	Window size
monitorWindowTime	primitive bool	Monitor window time
measuredSpectra[][][][]	typedef list <spectra*> SpectraCollection</spectra*>	Collection of measured spectra
streamReference	typedef list <spectra*> SpectraCollection</spectra*>	Stream reference
referenceSpectra[][][][]	Class Spectra*	Collection of reference scenes
windowSize	primitive int	Depth of reference average
SpectraCollection	typedef SpectraCollection	Collection of measured scenes
referenceSpectra[][][][]	Class Spectra*	Collection of calculated average scenes
hotReferenceFieldOfRegard	enum FieldOfRegard	Hot reference field of regard
coldReferenceFieldOfRegard	enum FieldOfRegard	Cold reference field of regard
refWindowSize	typedef int Int32	Reference window size
calWindowSize	typedef int Int32	Calibration window size
valWindowSize	typedef int Int32	Valid window size
maintainReferenceSceneVarianc	primitive bool	Reference scene variance

Table 3.1.2.9.1-1. SpectraManager Attributes

Name	Туре	Description
е		
correctionFilename[][]	typedef list <string> CMOCollection</string>	Collection matrix file names
polarizationSpectra[][]	typedef SpectraCollection	Collection of polarization spectra
windowTimeSpan[][][][]	typedef struct SYSTEMTIME	Collection of window time
radiance[][][]	Class Spectra*	Collection of radiance spectra
rawSummationSpectra[][][][]	Class Spectra*	Collection of raw spectra summation
lastSpectra[][][][]	Class Spectra*	Collection of last spectra
currentCorrectionFilename[][]	primitive string	Collection of current file name
currentPolarizationSpectra[][]	Class Spectra*	Collection of current polarization spectra
geolocationSpectra[][]]	typedef list <spectra*> SpectraCollection</spectra*>	Collection of current geolocation spectra
rawSummationSpectraNoCal[][][][]	Class Spectra*	Collection of no calibrated spectra summation
squareSummationSpectraNoCal[][][][]	Class Spectra*	Collection of no calibrated spectra square summation
trackLunarIntrusion	primitive bool	Lunar intrusion flag
maxLunarIntrusionRatio[]	typedef float Float32	Maximum lunar intrusion ratio
minFreqMicroWindow[]	typedef double Float64	Minimum wavenumber to detect lunar intrusion
maxFreqMicroWindow[]	typedef double Float64	Max wavenumber to detect lunar intrusion
edrMinimumWavenumber[]	typedef double Float64	EDR minimum wavenumber
edrMaximumWavenumber[]	typedef double Float64	EDR maximum wavenumber
lunarIntrusionCount[][][]	typedef unsigned int UInt32	Collection of lunar intrusion counts
requiresPhaseSync[][][]	primitive bool	Collection of spectra phase sync
lastReferenceSpectra[][][][]	Class Spectra*	Collection of last reference spectra
holdingReferenceSpectra[][][][]	Class Spectra*	Collection of holding reference spectra
LinearityCorrectionParameter[]	typedef struct LinearityCorrectionParameters	Collection of linearity correction parameters
FIR_GAIN[]	Class Spectra*	Collection of FIR gain
performLinearityCorrectionContr ol[]	primitive bool	Collection of information for performing linearity correction
boxcarAverageWidth	typedef int Int32	smoothing width for NEdN Estimate
calibrationMatrix[][]	BOOST::matrix <float64>*</float64>	Calibration Matrix
resamplingMatrix[]	BOOST::matrix <float64>*</float64>	Resampling Matrix
CorrectionParameter	SDR_CorrectionParam*	Reference to SDR correction parameters
CalibrationParameter	CalibrationParam*	Reference to Calibration parameters

3.1.2.9.2 SpectraManager Operations

Table 3.1.2.9.2-1.	Snectra Manager Onerations
1 abit 3.1.2.7.2 ⁻ 1.	Spectramager Operations

Name	Return	Parameters		
Cleans up all obsolete spectra.				
Cleanup	primitive void	n/a	n/a	
Initializes data for re-tasking.				
Init	primitive void	n/a	n/a	
Adds a correction spectrum to the moving window for synchronized application to calibration.				
scheduleCorrection	primitive void	primitive string	newCMOFileName	
enum SceneElement theFov				
enum Band::Wavelength theBand				
Adds the newSpectra to the measure spectra container.				
addSpectra	Class Spectra*	Class Spectra*	newSpectra	
Adds hot and cold target curves to the radiance container for the current spectra.				

Name	Return	Parameters	
addTargetRadianceCurves	primitive void	Class Spectra*	hotTargetCurve
	printing void	Class Spectra*	coldTargetCurve
Synchronizes the windowed data in	n the event the data set	does not begin on an 8 sec b	oundary.
syncReferenceSpectra	primitive bool	Class Spectra&	targetSpectra
		primitive bool	performFringeCountErrorHandling
Reconciles/Synchronizes the refere	ence spectra's phase to	the target spectra's phase.	
reconcileReferenceSpectraPhase	primitive bool	SceneElement	theFOV
		enum Band::Wavelength	theBand
		enum SweepDirection	thePSD
		typedef int Int32	maxFCETries
Returns requested measured spec	tra.		
getMeasuredSpectra	Class Spectra*	typedef int Int32	temporalItem
		enum SceneElement	fov
		enum Band::Wavelength	band
		enum FieldOfRegard	scene
		enum SweepDirection	psd
Returns requested correction spec	tra (mathematical corre	ction matrix).	
getCorrectionFilename	primitive string	typedef int Int32	temporalitem
			theFov
Cate the welled equat of execting for	- river for bond -	enum Band::Wavelength	theBand
Gets the valid count of spectra for a	a given tov, band, scene	e, and PSD	for (
getvalidCount	typeder int intoz	enum SceneElement	lov
		enum Band: Wavelengtn	pand
			nod
Sets the internal window size If th	e content of the current	window exceeds the new size	psu re the oldest contents are
discarded.			
setWindowSize	primitive void	typedef int Int32	numberOfSpectra
Forces a Spectra out of the window	w without adding one.		
purgeSpectra	Class Spectra*	enum SceneElement	theFov
		enum Band::Wavelength	theBand
		enum FieldOfRegard	theFOR
		enum SweepDirection	thePSD
Maintains Slope and Intercept valu	es for rapid mathematic	al use.	
buildNoisePrediction	buildNoisePrediction	enum SceneElement	theFov
		enum Band::Wavelength	theBand
		enum SweepDirection	thePSD
Propagates temporal window size	to assistant classes.		
declareWindowSize	typedef unsigned int UInt32	typedef unsigned int UInt32	referenceSize
		typedef unsigned int UInt32	calibrationSiz
Marks the calibration window invali	d for current contents.		
resetCalibrationWindow	primitive void	enum Band::Wavelength	band
		typedef unsigned int UInt32	newFoldIndex
Returns the total count of all buffer	ing windows requested.		
getBufferedSpectraCount	typedef unsigned int UInt32	primitive bool	includeReferenceCount
Adds a polarization correction spectra to the moving window for synchronized application			
schedulePolarizationCorrection	primitive void	Class Spectra*	newSpectra
	ı ·	enum FieldOfRegard	patternScene
		enum Band::Wavelength	patternBand
Returns requested polarization con	rection spectra.	_	
getPolarizationSpectra	Class Spectra*	typedef int Int32	temporalItem

enum FieldOfRegard theScene enum Band::Wavelength theBand Adds a geolocation spectrum to the moving window for synchronized application to calibration. scheduleGeolocation scheduleGeolocation primitive void Class Spectra* newSpectra enum FieldOfRegard theScene enum SceneElement theScene getGeolocation Spectra Class Spectra* typedef int Int32 temporalItem getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem enum SceneElement theFov theFov temporalItem Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. enum SceneElement theFov dijustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum Band::Wavelength theBand enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection theP				
Interview Interview enum Band::Wavelength theBand Adds a geolocation spectrum to the moving window for synchronized application to calibration. scheduleGeolocation to the moving window for synchronized application to calibration. scheduleGeolocation primitive void Class Spectra* newSpectra enum FieldOfRegard theScene enum SceneElement theFov Returns requested geolocation spectra. enum FieldOfRegard theScene enum SceneElement theFov getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum SceneElement theFov enum SceneElement theFOR enum SceneElement theFOR adjustWindowPhase typedef int Int32 enum SceneElement theFOR enum SweepDirection theFA class BOOST::vector linearPhaseShift				
Adds a geolocation spectrum to the moving window for synchronized application to calibration. scheduleGeolocation primitive void Class Spectra* newSpectra enum FieldOfRegard theScene enum SceneElement theFov Returns requested geolocation spectra. enum FieldOfRegard theScene getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem enum FieldOfRegard theScene enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum SceneElement theFOR enum SceneElement theFOR enum SceneElement theFOR adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFOR enum SceneElement theFOv Class BOOST::vector linearPhaseShift std::complex< <float64> >* Removes a given spectra from the rawSummationSpectra and squareSummation</float64>				
scheduleGeolocation primitive void Class Spectra* newSpectra enum FieldOfRegard theScene enum SceneElement theFov Returns requested geolocation spectra. getGeolocationSpectra Class Spectra* typedef int Int32 temporalltem getGeolocationSpectra Class Spectra* typedef int Int32 temporalltem enum FieldOfRegard theScene enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum SceneElement theFov enum SceneElement theFov adjustWindowPhase typedef int Int32 enum SceneElement theFov enum SceneElement theFov enum SweepDirection theFov enum SweepDirection theFov enum SweepDirection theFos Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. std::complex <float64> >* linearPhaseShift <</float64>				
enum FieldOfRegard theScene enum SceneElement theFov getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. newMeasurement MonitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* linearPhaseShift removelnyalidSpectra primitive yoid Class Spectra* oldSpectra</float64></float64>				
enum SceneElement theFov Returns requested geolocation spectra. getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem getGeolocationSpectra Class Spectra* enum FieldOfRegard theScene enum SceneElement theFov theFov theScene Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. newMeasurement MonitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum SceneElement theFOv enum SceneElement theFOR enum SweepDirection theFov class BOOST::vector linearPhaseShift std::complex<				
Returns requested geolocation spectra. getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem getGeolocationSpectra Class Spectra* typedef int Int32 temporalitem getGeolocationSpectra Class Spectra* theScene enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum SceneElement theFOR enum SceneElement theFOR enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* std::complex<float64> >*</float64></float64></float64>				
getGeolocationSpectra Class Spectra* typedef int Int32 temporalItem enum FieldOfRegard theScene enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase adjustWindowPhase typedef int Int32 enum SceneElement theFOR enum SceneElement theFov enum SceneElement theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector<				
enum FieldOfRegard theScene enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase adjustWindowPhase typedef int Int32 enum SceneElement theFOR enum SceneElement theFov enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64></float64>				
enum SceneElement theFov Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. newMeasurement monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase theFOR enum SceneElement theFOR adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64>				
Calibrates the newMeasurement and performs a ratio threshold check against the corresponding window average. monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. primitive void Class Spectra*</float64></float64>				
monitorLunarIntrusion primitive bool Class Spectra& newMeasurement Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64></float64>				
Adjusts window phase. adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64></float64>				
adjustWindowPhase typedef int Int32 enum FieldOfRegard theFOR enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64>>* std::complex<float64>>* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64></float64>				
enum SceneElement theFov enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64>>* std::complex<float64>>* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra</float64></float64>				
enum Band::Wavelength theBand enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64>>* std::complex<float64>>* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra removeInvalidSpectra primitive void Class Spectra* oldSpectra</float64></float64>				
enum SweepDirection thePSD Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra removeInvalidSpectra primitive void Class Spectra* oldSpectra</float64></float64>				
Class BOOST::vector linearPhaseShift std::complex <float64> >* std::complex<float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. oldSpectra removeInvalidSpectra primitive void Class Spectra* oldSpectra</float64></float64>				
std::complex <float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. removeInvalidSpectra primitive void Class Spectra* oldSpectra</float64>				
std::complex <float64> >* Removes a given spectra from the rawSummationSpectra and squareSummationSpectra. removeInvalidSpectra primitive void Class Spectra* oldSpectra</float64>				
Removes a given spectra from the rawSummationSpectra and squareSummationSpectra.				
removelnvalidSpectra primitive void Class Spectra* oldSpectra				
enum cal i ype				
Starts a batch processing job on holdingReferenceSpectra. Detects ECE on each Ref Scene starting with LW1. If LW1				
does not detect we move on to LW2, and so on and so forth. When a detection passes that fringe count is applied to each				
fov, band, and PDS of that FOR. The ref scene is added to the window.				
batchReferenceFCE primitive void enum ReferenceSpectra spectraType				
enum SweepDirection psd				
Adds new reference spectra to holdingReferenceSpectra container.				
addHoldingReferenceSpectra primitive void Class Spectra* newSpectra				
ICT and DS Synchronization batch job that is done when the first ES pops out of the window.				
batchICTDSSynchronization primitive bool Class Spectra* oldSpectra				
primitive int maxFCETries				
Starts a batch processing job of Earth Scene Spectra. The argument oldSpectra is the spectra that just popped out of a				
window for a certain FOR and PSD. Detection is started on LW1, and continues for each FOV and Band until a fringe				
count passes or all FOVs and Bands are exhausted.				
DatchEarthSceneFCE primitive bool Class Spectra OldSpectra				
calculates the estimated detector voltage at the preamp.				
Calculates the variance of DS or ICT in the eliding window				
calculates the variance of DS of ICT in the shulling window.				
enum Pand: Woyclangth the Pand				
enum SwoonDirection the PSD				
enum SweepDirection of anastra as/haratian as/ha				
calibrate primitive void Class Sportra* newSportra				
Class Spectra new Spectra				
Class Special IIUIREISpecial				
Class Specilia Columetopecilia				
enum Band: Wavelength the Band				
Apply polarization correction on user arid after calibation				
Apply polarization correction on user grid after calibation				

3.1.2.10 Class Spectra

This class is the container for the processed video data. Table 3.1.2.10.1-1 shows the Spectra attributes and Table 3.1.2.10.2-1 shows the Spectra operations.

3.1.2.10.1 Spectra Attributes

Name	Туре	Description
response	typedef double Float64	Response flag
realWavenumberBin	Class BOOST::vector <double></double>	Collection of real component of complex spectra
imaginaryWavenumberBin	Class BOOST::vector <double></double>	Collection of imaginary component of complex spectra
NEdN_Estimate	Class BOOST::vector <float64></float64>	Collection of NEdN estimation
firstWavenumber	typedef double Float64	Frequency of amplitude in bin zero
wavenumberBinSize	typedef double Float64	Frequency offset per bin (deltaSigma)
getVersionNumber	typedef unsigned short int	Version number
foldIndex	typedef unsigned int UInt32	Index
fceParameters[]	typedef struct FCEParam	Collection of FCE parameters
spectralBand	enum Band::Wavelength	Actual band reported in interferogram
fieldOfView	enum SceneElement	Actual field of view reported in interferogram
fieldOfRegard	enum FieldOfRegard	Actual field of regard reported in interferogram

Table 3.1.2.10.1-1. Spectra Attributes

Name	Туре	Description
sweepDirection	enum SweepDirection	Actual porch swing direction reported in interferogram
userLocks	typedef int Int32	User lock flag
scalingEnabled	primitive bool	Scaling enabled flag
Channel	typedef int Int32	Channel number
RDR_Status	typedef struct RawDataRecordStatusRegister	Collection of interferogram status information
saveVersion400	primitive void	Version number

3.1.2.10.2 Spectra Operations

Table 3.1.2.10.2-1.	Spectra Operations
---------------------	---------------------------

Name I	Return Para	umeters	
References to the root of the	ne complex squares.		
getMagnitude	Class	n/a	n/a
	BOOST::vector <float64< td=""><td></td><td></td></float64<>		
	>&		
Resizes the bin count.			
setSize	primitive void	typedef unsigned int UInt32	newSize
Clears internal data vector	S.		
clear	primitive void	n/a	n/a
Adds complex squares.			
addSquare	primitive void	Class Spectra&	source
		primitive bool	complex

Name R	eturn Para	ameters	
Removes complex squares			
removeSquare	primitive void	Class Spectra&	source
	1	primitive bool	complex
Divides each element of the	e spectra by a specified nu	mber.	
operator/	primitive void	typedef double Float64	factor
Multiplies each element of t	the spectra by a specified r	number.	
operator*	primitive void	typedef double Float64	factor
Multiplies each element of t	the spectra bin by bin with	the factor.	
operator*	primitive void	Class Spectra&	factor
Divide the spectra by a spe	cified spectra.		
operator/	primitive void	Class Spectra&	divisor
Makes a copy of source spe	ectra.		
operator=	Class Spectra&	Class Spectra&	source
Adds a spectrum to the cur	rent spectra.		
operator+	primitive void	Class Spectra&	rightOperand
Subtracts a spectrum from	the current spectra.		<u> </u>
operator-	primitive void	Class Spectra&	rightOperand
Returns packed content of	the class.		<u> </u>
save	primitive string	n/a	n/a
Clips and re-samples it's se	If to new resolution.	1.	
resample	primitive bool	typedef double Float64	startWavenumber
•		typedef double Float64	stopWavenumber
		Typedef int Int32	binSize
Clips and re-samples it's se	If to new resolution.		
clipGuardBands	primitive bool	typedef double Float64	startWavenumber
1 -	-	typedef double Float64	stopWavenumber
Returns packed content of	the class.		,
saveVersion400	primitive void	primitive string&	binaryImage
Generates NEdN estimation	ns.		, , ,
generateUSN	primitive void	Class Spectra*	rawSum
		Class Spectra*	squaredSum
		typedef int Int32	windowSize
Smoothes the spectra.			
Smooth	primitive void	typedef int Int32	windowSize
Applies linearity error correct	ction to the spectra.		
applyLinearityErrorCorrect	primitive void	n/a	n/a
ion			
Updates CrIS SDR geoloca	tion.		
updateCrisSdrGeolocation	primitive void	typedef struct	algDataPtr
		CrisSdrAlgDataType*	
		typedef int Int32	scanldx
Updates CrIS SDR data.	-		
updateCrisSdrData	primitive void	typedef struct CrisSdrAlgDataType	*sdrPtr
		typedef struct CrisSdrHdrDataType	*hdrPtr
		typedef unsigned int UInt32	scanldx
		std::auto_ptr <sciencedataprocess< td=""><td>ScienceDataProcessor</td></sciencedataprocess<>	ScienceDataProcessor
		or>&	Ptr
After spectra phase shifted	re-generate interferogram	s.	
reGenerateInterferogram	void		

3.1.2.11 Class TelemetryProcessor

This class provides the interface to retrieve science data from raw instrument telemetry. It encapsulates the extraction of housekeeping, diagnostic and normal mode interferograms. Table 3.1.2.11.1-1 shows the TelemetryProcessor attributes and Table 3.1.2.11.2-1 shows the TelemetryProcessor operations.

3.1.2.11.1 TelemetryProcessor Attributes

1 4010 5	•1•2•11•1 1• 1•1000	
Name	Туре	Description
LRV	typedef TelemetryRecord	Last received value
apidInfoMap	typedef std::map <uint16, ApidInfoStruct*> ApidInfoMap</uint16, 	Collection of apid information
apidCollection	typedef std::vector <uint16> ApidCollection</uint16>	Collection of apid information
ValueToChannelMap	typedef std::map <int32, uint32=""> ValueToChannelMap</int32,>	Collection of value to channel information
channelToDetector[][]	typedef unsigned int UInt32	Collection of channel to detector
detectorToChannel[][]	typedef unsigned int UInt32	Collection of detector to channel
lastFrameTime	typedef struct SYSTEMTIME	Last frame time
lastFrameMiliTime	typedef unsigned int UInt32	Last frame mili time
lastFrameMicroTime	typedef unsigned short int UInt16	Last frame micro time
lastFrameDayTime	typedef unsigned short int UInt16	Last frame day time
telemetryLookup	Class map <string, int32=""></string,>	Collection of telemetry lookup data
fourMinPktUpdateIndex	typedef int Int32	Four minutes package update index
theCurrentVideoSource	enum BurstModes	Collection of burst modes
theVideoMode	enum BurstModes	The video mode
theEndOfEightSecEpoch	primitive bool	The end of eight seconds epoch
purgeCount	typedef int Int32	The purge count
theTelemetryVersion	enum TelemetryVersions	Collection of telemetry versions
fullVideoMode	primitive bool	Full video mode flag

Table 3.1.2.11.1-1. TelemetryProcessor Attributes

3.1.2.11.2 TelemetryProcessor Operations

Table 3.1.2.11.2-1. TelemetryProcessor Operations

Name	Return	Parameters		
Returns index of first telemetry point with the specified APID.				
findRecord	typedef int Int32	typedef unsigned short int UInt16	targetFrameType	
findRecord	typedef int Int32	primitive string	targetName	
makePoint	primitive void	primitive string&	pointName	
		primitive string&	pointDescription	
		primitive string&	subsystem	
		primitive string&	frameGroup	
		typedef unsigned short int UInt16	frameType	
		Class TelemetryPoint::TelemType	telemType	
		typedef unsigned int UInt32	bitLocation	
		typedef unsigned int UInt32	pointSize	
		primitive string&	pointUnits	
		typedef unsigned int UInt32	telemetryPointID	
		Class	coefficientContexts	

Name	Return	Parameters	
			limitContexts
		TelemetryPoint: imitContextCollection*	mmcontexts
Returns a constant reference	to the telemetry poi	nt at the given index.	
getRecord	Class	typedef int Int32	vectorIndex
	TelemetryPoint&		
Clears and performs cleanup	operations on the te	elemetry record.	
purgeTelemetryRecord	primitive void	n/a	n/a
Returns the name of the frame	e group to which the	specified APID belongs.	
identifyFrameType	primitive string	typedef unsigned short int UInt16	keyAPID
Parses a single telemetry fran	ne.		
parseDisplayData	primitive void	typedef unsigned short UInt16	theAPID
		typedef struct SYSTEMTIME	&theTime
		typedef unsigned int UInt32	theMiliTime
		typedef unsigned short UInt16	theMicroTime
		typedef unsigned short UInt16	theDayTime
		typedef unsigned char UInt8	*newData
Extracts the video data from the	he supplied data.		
extractVideoData	primitive void	typedef unsigned int UInt32	detector
		typedef unsigned int UInt32	wavelength
		typedef unsigned char UInt8	*trimmedData
Extracts the diagnostic data fr	om the supplied dat	ta.	
extractDiagnosticData	primitive void	typedef unsigned short UInt16	theAPID
		typedef unsigned int UInt32	detector
		typedef unsigned int UInt32	wavelength
		typedef unsigned char UInt8	*detData
		typedef int Int32	dataOffset
Matches the specified APID w	vith a detector and a	wavelength.	
rdrLookup	primitive void	typedef unsigned short UInt16	theAPID
		typedef unsigned int UInt32	*detector
		typedef unsigned int UInt32	*wavelength
		typedef unsigned int UInt32	*scene
Resets LastBurstApidDetection	n by forgetting that	any of the APIDs were in the last burst.	
resetLastBurstApidDetection	primitive void	n/a	n/a
Updates TelemetryPoint stale	value.		
updateStaleValues	primitive void	n/a	n/a
Checks whether the specified	APID is recent.		
isApidRecent	primitive bool	typedef unsigned short UInt16	theApid
Finds and returns the info ass	ociated with the spe	ecified apid.	
findApidInf	typedef struct	typedef unsigned short UInt16	apid
Reads telemetry points data			
readTelemetryPoints	primitive void	n/a	n/a
Checks if telemetry record de		1//a	1# a
anablal imitChasking	nieu.	primitivo bool	limitChook
enableLinitGrecking			III III CHECK

3.1.2.12 Class VideoData

This class is responsible for internal bit-trim reversal behavior of the TelemetryProcessor class. Table 3.1.2.12.1-1 shows the VideoData attributes and Table 3.1.2.12.2-1 shows the VideoData operations.

3.1.2.12.1 VideoData Attributes

10		1 Itel is alles
Name	Туре	Description
theExtractionRecord[]	struct EXTRACTION_RECORD	Collection of band specific bit trim values
theTlmLookupTable[]	struct TELEMETRY_LOOKUP	Collection of complex samples
frStartBit[] frStopBit[]	UInt32[][]	Contain original trim table values from the engineering packet (before truncation if using
frTrimTable[]		full resolution data)

Table 3.1.2.12.1-1. VideoData Attributes

3.1.2.12.2 VideoData Operations

Name	Return	Parameters	
Populates the internal sy	mbol table used to	o unpack and extract the bit-t	rimmed data set.
initSymbolTable	primitive void	primitive bool	useDefaultTable
Coordinates the real and	imaginary extract	ion of the complex samples i	into the real and imaginary portions.
Extract	primitive void	typedef unsigned int UInt32	detector
		typedef unsigned int UInt32	wavelength
		typedef unsigned char UInt8	*trimmedData
Retrieves the correct trim	n value from the sy	vmbol table for a given wavel	length sample.
getTrimSize	typedef unsigned short UInt16	typedef unsigned int UInt32	wavelength
		typedef int Int32	sample_index
Established the 4 minute	bit trim tables for	all three bands.	
buildExtractionTables	primitive void	primitive bool	useDefaultTable
Extracts the original sample from the pack data stream by using the bit-trimming information configured in the symbol table.			
restoreSamples	primitive void	typedef unsigned int UInt32	detector
		typedef unsigned int UInt32	wavelength
		typedef unsigned short int UInt16	dataElement
		primitive bool	realComponent
Updates data values in th	ne extradction reco	prd	
setExtractionRecord	EXTRACTION RECORD struct	EXTRACTION_RECORD	record
		UInt32	band

Table 3.1.2.12.2-1. VideoData Operations

3.1.2.13 Class ScienceCalibrationRecord

This class is responsible for processing the eight second science calibration packet (Refer to the Equation (79e) in Section 5.5 Temperature Computation, BOM-CrIS-0067 Revision E. The constants 1, 1, 2 and 5 are the coefficients of the Taylor series expansion (Note: ITT modifies these coefficients in V2.14.0)). It maintains the sliding window average ICT temperature. Table

3.1.2.13.1-1 shows the ScienceCalibrationRecord attributes and Table 3.1.2.13.2-1 shows the ScienceCalibration operations.

3.1.2.13.1 ScienceCalibrationRecord Attributes

Name	Туре	Description
CalibrationParameter	typedef struct CalibrationParam	Collection of calibration configuration values
TestEnvironmentParameter	typedef struct CrIS TestEnvironmentParameters	Collection of instrument configuration values
GeneralParameter	typedef struc SDR GeneralParameters	Collection of processing configuration values
AlgorithmParameter	typedef struct SDR AlgorithmnParameter	Collection of algorithm configuration values
processingIctPeriod	Class TemperatureHistory	Collection of temperature measurements
processingIctSensor1	Class TemperatureHistory	Collection of temperature measurements
processingIctSensor2;	Class TemperatureHistory	Collection of temperature measurements
processingBeamsplitterPeriod	Class TemperatureHistory	Collection of temperature measurements
processingScanMirrorPeriod	Class TemperatureHistory	Collection of temperature measurements
processingOmaPeriod	Class TemperatureHistory	Collection of temperature measurements
processingScanBafflePeriod	Class TemperatureHistory	Collection of temperature measurements
processingTelescopePeriod	Class TemperatureHistory	Collection of temperature measurements
processing CoolerStage1 Deriod	Class TemperatureHistory	Collection of temperature measurements
processingCoolerStage?Period	Class TemperatureHistory	Collection of temperature measurements
processingCoolerStage2Period	Class TemperatureHistory	Collection of temperature measurements
processingCoolerStage4Period	Class TemperatureHistory	Collection of temperature measurements
processingLaserDiodeCurrentPeriod	Class TemperatureHistory	Collection of temperature measurements
processingLaserDiodeTempPeriod	Class TemperatureHistory	Collection of temperature measurements
processingPeriod	Class TemperatureHistory	Collection of temperature measurements
ieCCACalibResistorTemp[]	typedef int Int32	Collection of resistor temperature measurements
lowRangeCalibResistor[]	typedef int Int32	Collection of low range resistor measurements
highRangeCalibResistor[]	typedef int Int32	Collection of high range resistor measurements
ictTemp[][]	typedef float Float32	Collection of ICT temperature measurements
ictRaw[][]	typedef int Int32	Collection of ICT temperature measurements
crossTrackServoErr[]	typedef int Int32	Collection of cross track servo error
		measurements
inTrackServoErr[]	typedef int Int32	Collection of in track servo error measurements
laserDiodeCurrent	typedef int Int32	Laser diode current
laserDiodeTemp	typedef int Int32	Laser diode temperature
beamsplitterTemp	typedef int Int32	Beam splitter temperature
ssmScanMirrorTemp;	typedef int Int32	Scan mirror temperature
ssmScanMirrorBattleTemp	typedet int Int32	Scan mirror baffle temperature
coolerStage1Temp	typedef int Int32	Cooler stage1 temperature
coolerStage2Temp	typedet int Int32	Cooler stage2 temperature
coolerStage31emp	typedet int Int32	Cooler stages temperature
coolerStage41emp	typedet int Int32	Cooler stage4 temperature
telescope I emp;	typedef int int52	I elescope temperature
ScilleLimits EngConyCooff	typedel struct Limits	Structure to hold a variety of DriftLimits
captureNevtLaserInfo	nrimitive bool	Next laser information
capturedLaserDiodeCurrent	typedef double Float64	Laser diode current

Table 3.1.2.13.1-1. ScienceCalibrationRecord Attributes

capturedLaserDiodeTemperature	typedef double Float64	Laser diode temperature
previousAveragedLaserDiodeTemp	typedef double Float64	Previous averaged diode temperature
previousAveragedLaserDiodeCurren t	typedef double Float64	Previous averaged diode current
servoValuesChanged	primitive bool	Servo value change flag
convertedCrossTrackServoErr[]	typedef double Float64	Converted cross track servo error
convertedInTrackServoErr[]	typedef double Float64	Converted in track servo error
sciCalMissing	Primitive bool	Flag indicating science calibration missing.

3.1.2.13.2 ScienceCalibrationRecord Operations

Name Ret	um	Parameters	15
Calls clearHistory to free memory.			
clearHistory	primitive void	n/a	n/a
Sets window size.			
setWindowSize	primitive void	typedef int Int32	newSize
Reads Values from Science Teleme	etry Packet in	to class variables.	
refreshData	primitive bool	typedef unsigned short UInt16	apid
		typedef struct CrisSdrAlgDataType*	algDataPtr
		typedef struct IngMsdCoefficients_CrisSdrStruct*	cfgParmsPtr
		typedef unsigned int UInt32	scanldx
Calculates ICT temperature and add	ds to sliding w	vindow average.	
calculatelctTemperature	primitive void	Class TemperatureHistory::AvgPRTTemp	*avglctTempPtr
		typedef struct IngMsdCoefficients_CrisSdrStruct*	cfgParmsPtr
Calculates Beamsplitter temperatur	e and adds to	sliding window average.	
calculateBeamsplitterTemperature	typedef double Float64	n/a	n/a
Calculates Scan Mirror temperature	and adds to	sliding window average.	
calculateScanBaffleTemperature	typedef double Float64	n/a	n/a
Calculates OMA temperature and a	dds to sliding	window average.	
calculateOmaTemperature	typedef double Float64	n/a	n/a
Adds a missing temperature record	to the temper	rature history window.	
markMissingCal	primitive void	n/a	n/a
Removes last temperature record fr	om the tempe	erature history window.	
removeLastCal	primitive void	n/a	n/a
Finds the max and min temperature the Science Telemetry Drift Limits.	s in the temp	erature history window and determines	if the difference exceeds
hasExcessThermalDrift	primitive bool	n/a	n/a

Table 3.1.2.13.2-1. ScienceCalibration Operations

3.1.2.14 SDR Generator Application COTS Components

3.1.2.14.1 uBLAS (BOOST)

BOOST, uBLAS provides templated C++ classes for elementary linear algebra, and access into vectors and matrices by way of matrix and vector adapters.

3.1.2.14.2 LAPACK

CrIS SDR uses the LAPACK dgetrf and dgetri functions when inverting matrices.

3.1.2.14.3 FFTW

CrIS SDR uses three one-dimensional discrete Fourier transform routines from FFTW; one which performs DFT on real data returning only the real part of the result, another which performs DFT on real data and returns a complex result, and finally, a function that performs DFT on complex data and returns a complex result.

3.1.2.15 The Sliding Window

The C++, CrIS SDR code, converted from MATLAB by ITT, was designed to work with a continuous stream of data. The processing model used by JPSS sends data to the CrIS SDR processes in discrete (not necessarily contiguous) chunks called granules. These granules are stored in data structures called RDRs.

CrIS granules contain one or more scans. As shown in Figure 3.1.2.15-1, each scan consists of four reference FORs and 30 earth view FORs. Each FOR is composed of nine FOVs which, in turn, are comprised of three wavelength bands (LW, MW, and SW). Each FOR/FOV/wavelength combination is processed independently and stored in separate sliding windows.

Scan-level FOR/FOV/Wavelength packets

Figure 3.1.2.15-1. Sliding Window Concept

Here, the red box is the reference scene sliding window and the blue box is the sliding window of earth scenes. The figure shows the process of building the sliding windows from nothing and then processing one scan.

Because only the earth-scene "ES" FORs are calibrated, there are 9 "FOVs" x 3 "IR Bands x 2 "mirror sweep directions" separate ICT and DS sliding windows for a given scan. A single sliding window will contain a nominal 30 ICT or DS individual raw spectra. The index 30 does not refer to the number of FOR per scan but rather an average of the ICT or DS over 30 scans centered about the Earth scene spectrum.

Earth view spectra are also stored in a smaller sliding window. However, this sliding window has no scientific value and is used as a matter of convenience to assist tracking when an Earth scene spectrum should be processed. Because these spectra are not stored for processing other Earth view scans, only future Earth views need to be saved in this smaller window for future processing. Earth view spectra are processed upon being ejected from their sliding window. In the following sections, sliding window refers to the window of reference scenes.

The CrIS SDR implementation has hard-coded the sliding window size at 30, although this parameter is configurable via a global header file. (Consequently, however, this does imply that reconfiguration of the parameter requires a recompilation of the CrIS SDR library.) The earth view sliding window is one-half that size (current scan plus 14 future scans). The process of adding a single scan to a sliding window is shown in Figure 3.1.2.15-1.

3.1.2.15.1 One Additional Spectra is Needed to Move the Window

All Earth view spectra that are calibrated using a partial sliding window are marked as being of degraded quality. Earth view spectra are processed when ejected from the sliding window. Therefore, not only must enough scenes be retrieved to keep the sliding window full during processing, enough scans must be retrieved to eject the tasked spectra from the window. For example, when processing with granules consisting of a single scan, 31 scans must be retrieved (15 prior, plus 14 after, plus the scan contained within the granule that has been tasked to be processed to fill the window, plus one additional scan to eject the desired processed Earth views). If granules containing four scans were being processing, then 34 scans would be required.

3.1.2.15.2 Unaligned Scans Require Retrieval of Yet Another Scan

CrIS SDR scans are not guaranteed to align with granules boundaries. In other words, the time associated with the beginning of a scan is not equal to the time associated with the beginning of a granule. This implies that the RDR data structure need not begin with the first spectra of the first scan of the granule that has been tasked to process.

This CrIS SDR implementation ensures that the last scan is retrieved in its entirety by requesting enough granules to obtain yet another scan. This ensures success if at least a part of an extra scan has been retrieved; there must be complete scans for all scans before the extra scan. CrIS SDR uses the ceilings of the following formulae to liberally ensure that the entirety of each scan retrieved associated with the granule that has been tasked to process, where W represents the sliding window size and S represents the number of scans per granule:

Number of past granules to retrieve:
$$\left[\frac{W}{2}\right]$$

Number of future granules to retrieve:
$$\left[\frac{\frac{W}{2} + S}{S}\right]$$
.

3.1.2.15.3 Granule Version Ids

The granules containing science data have a version id as a part of their meta-data. Occasionally, an RDR needs to be updated; and when this occurs, its granule version ID is modified as well.

Although not all scans are processed, all granules needed for processing are retrieved. Upon receipt of the granules needed for the latest tasking, CrIS SDR checks the version ID associated with the scans already in the sliding window from the last tasking. If one of those version ids has changed, then the entire sliding window is rebuilt from scratch.

3.1.2.16 Sliding Window Optimization

This implementation has ameliorated the latency introduced when switching from a stream-based input to a granule-based input paradigm by preserving as much of the sliding window as possible between taskings.

This is done by using granule IDs to determine how many granules have passed since the last tasking. CrIS SDR uses this value to determine how many future scans are added to the sliding window. If this difference implies that the number of passed scans is greater than the number of future scans already stored in the sliding window, the sliding window is cleared of all scans and refilled.

Figure 3.1.2.16-1 illustrates this concept in its idealized form. Four CrIS SDR processes are run concurrently, each of which processes a 4-scan granule. State A represents the current 4-process tasking, while State B represents the next 4-process tasking. There are 5 sequential tasks across the 2 different states, so 4 are processed in State A, while the last is processed in State B. Assume that Process 1 in State A is the first granule tasked to the CrIS SDR algorithm. This process fills the sliding window with 30 scans worth of data (15 past cross-granules scans, 4 scans from the tasked granule, and 11 future cross-granule scans) before processing the 4 tasked scans in the middle of the window. Each time a scan is processed, one scan is purged from the beginning of the window and the next scan from the future cross-granules is added to the end of the window. Therefore, 16 scans are purged while 16 are added from State-to-State during ideal processing.

Note: There are no interactions among the Sliding Windows for the illustrated 4 concurrent SDR processes, i.e., each SDR Process Sliding Window is independent of the other concurrent SDR Processing.

Figure 3.1.2.16-1. Sliding Window Optimization Concept

3.1.2.17 Creation and Storage of Correction Matrices

Parameters provided by the four-minute engineering packets can prompt CrIS SDR to rebuild its correction matrix. When a correction matrix rebuild is performed, both the new matrix and its corresponding four-minute packet are saved to DMS.

Adding only the scans needed to refill the sliding window limits the scans actually examined during processing. When tasked sequentially, or nearly sequentially, the four-minute engineering and eight-second packets enclosed within which the granule CrIS SDR is tasked to process, are not examined. This requires CrIS SDR to perform some correction matrix updates before they are to be used for processing.

Figure 3.1.2.17-1 shows an example of how a correction matrix build is handled in the case of sequential tasking. This figure shows us that the four-minute packet is added to the *end* of the sliding window *only once*. Processing any other granule results in that scan being placed at the $+14^{\text{th}}$ position. Thus CrIS SDR, when tasked sequentially, builds a correction matrix when a rebuild is detected for the $+14^{\text{th}}$ scan.

Figure 3.1.2.17-1. Sequential Tasking of a Correction Matrix Build

The boxes with single hashes all belong to the same, four-scan granule. The boxes with cross hashes are those scans after being processed. The scan currently being processed is surrounded by a bold border. The shaded box represents a scan which causes the correction matrix to be rebuilt. In this scenario, the correction matrix would be rebuilt at time 1.3. This scan is never again at the +14 location unless this granule is processed again.

The only other scenario where a correction matrix is rebuilt is when a rebuild is detected for the 0th (currently being processed) scan. This can only occur when the sliding window is being completely rebuilt. There is no concern about inadvertently building an already built matrix because the start time of the granule that caused the matrix rebuild is stored with the matrix as metadata. When tasked, this metadata is used to determine which correction matrix to load from DMS. When a scan that caused a rebuild during an earlier tasking (or even by another CrIS SDR process) is later than a part of the granule CrIS SDR is tasked to process, the previously built correction matrix and its accompanying four-minute engineering packet associated with this scan is the one that's returned by DMS. Therefore, parsing the four-minute engineering packet shows no change when compared to the engineering packet retrieved from DMS.

3.1.2.18 Performance

The processing of data is organized around an eight-second scan period, where the hot reference scene immediately precedes the eight-second science telemetry packet. The values derived from these packets remain constant for all measured earth scenes for the next eight-second period. The following items have been calculated at the beginning of this period.

- Hot and Cold variances for the moving window averages
- NEdN slope and intercept built from variance (optionally)
- Radiance for the current laser frequency

The sliding window average is maintained in a doubly-linked list where a sum and sum-ofsquares is adjusted for each valid spectra entering or exiting the calibration period. In the event of earth scene fringe count detection, each of the windowed Cold reference spectra are phase adjusted and the state of the average restored.

The 128 point Legendre polynomials used in the calculation of the ILS Self Apodization Matrix have been "hard-coded".

When appropriate, the Correction matrix is loaded from DMS to address expensive recalculations that would occur at the receipt of the first four minute engineering packet.

3.1.2.19 Operational Adaptation, Deviation or Limitations

The following deviations or adaptations have been made in the C++ prototype code and are discussed in detail in this section.

1. Lunar Intrusion

Lunar Intrusion

Operationally the CrIS SDR Algorithm is required to support the detection and invalidation of space reference spectra that have experienced a lunar intrusion. The final iteration of the algorithm's prototype code described in later sections of this document does include functionality to detect and handle lunar intrusions.

The following steps are taken with a copy of each new Deep Space spectrum to detect a lunar intrusion:

- 1. Perform FCE handling on the new uncalibrated DS spectrum in each band, FOV and sweep direction, $\widetilde{S}^{DS}[n]$
- 2. Subtract the averaged uncalibrated DS spectrum from the newest DS spectrum that was not included in the average, $\sim p_{S}$ $\sim p_{S}$ $(\sim p_{S})$

$$\widetilde{R}^{DS}[n] = \widetilde{S}^{DS}[n] - \left\langle \widetilde{S}^{DS}[n] \right\rangle$$

3. Subtract the averaged uncalibrated DS spectrum from the averaged uncalibrated ICT spectrum,

$$\hat{\widetilde{R}}^{ICT}[n] = \left\langle \widetilde{S}^{ICT}[n] \right\rangle - \left\langle \widetilde{S}^{DS}[n] \right\rangle$$

4. Compute real part of calibrated lunar spectrum in digital units averaged over the IR bands and then compare with a configurable threshold,

$$\frac{\sum_{n=n_{\min}}^{n_{\max}} \operatorname{Re}\left\{\frac{\widetilde{R}^{DS}[n]}{\widetilde{R}^{ICT}[n]}\right\}}{n_{\max} - n_{\min}} > \frac{LI_{\lim}}{100}$$

Where n_{\min} and n_{\max} define wavenumber bins corresponding to lower and upper band edge, respectively. Lunar Intrusion is assumed when that that ratio is greater than the threshold.

The configurable parameter maxLunarRadiance in the CrIS SDR PCT is a 1D array that holds 3 "threshold" values for each band (LW, MW and SW).

If Lunar Intrusion is detected, the new DS spectrum is marked as invalid and excluded from the Moving Window average. This action results in all Earth Scene spectra calibrated, while the invalid DS spectrum is in the Moving Window, to be marked as invalid with a flag identifying Lunar Intrusion. After the entire window is refreshed, i.e., the intruded spectrum falls out of the window after four minutes, Earth Scene spectra is considered valid.

3.1.2.20 Telemetry Data XML Files

The telemetry data is parsed at compile time from telemetry XML files. A source file is autogenerated (AutoGeneratedTelemetryData.cpp) and compiled into the library (libProSdrCris). Therefore, the XML are not necessary for successful run-time operation. This makes the packet parsing definitions flexible enough to be modified during development while still protecting copyright restrictions. These XML files are located in \${PRO_HOME}/cfg/CRIS.

3.1.3 Graceful Degradation

All CrIS SDR inputs are required. Therefore, there is no graceful degradation.

3.1.4 Exception Handling

Generally, exceptions are introduced by incompatible configuration setup for the data being processed. Handling of such events usually results in the offending spectra to be invalidated and processing continued according to the rules defined for missing data. The resultant log file contains details describing individual exceptions.

3.1.5 Data Quality Monitoring

Data quality tests are performed on the CrIS SDR and each test can produce a Data Quality Notification (DQN). If the thresholds are met, the algorithm stores a DQN to DMS indicating the tests that failed and the number of failures. The DQN criteria is adjustable and contained in a data quality threshold table (DQTT). If the CrIS SDR algorithm cannot obtain the DQTT, the algorithm still executes but no DQN tests are run. Appendix C in 474-00448-02-03_JPSS-DD-Vol-II-Part-3 lists the DQTT QF Mapping. DQN-able QF logic is outlined in 474-00448-04-03_JPSS-SRSPF-Vol-IV-Part-3.

3.1.5.1 Quality Flags

Both 474-00448-02-03_JPSS-DD-Vol-II-Part-3 and 474-00448-04-03_JPSS-SRSPF-Vol-IV-Part-3 provide details of the CrIS SDR quality flag descriptions and triggering logic.

3.1.6 Computational Precision Requirements

In general, all computations should be performed using double precision floating point arithmetic to maintain less than the required 1 ppm error contribution due to computation precision. It should be noted that the final output spectrum is represented with single precision floating point values.

3.1.7 Algorithm Support Considerations

Reference the list of libraries under Section 3.1.2.14.

- 3.1.8 Assumptions and Limitations
- 3.1.8.1 Assumptions

Currently this algorithm has only been tested with one-scan and four-scan granules.

3.1.8.2 Limitations

When the option to reassign the Field of Regard for the DS and/or ICT scenes to obtain calibrated output at one of these scenes, only one sweep direction of the two samples is calibrated based on which Earth Scene is selected as the hot reference.

4 GLOSSARY/ACRONYM LIST

4.1 Glossary

Below is a glossary of terms most applicable for this OAD.

Term	Description
Algorithm	 A formula or set of steps for solving a particular problem. Algorithms can be expressed in any language, from natural languages like English to mathematical expressions to programming languages like FORTRAN. On JPSS, an algorithm consists of: A theoretical description (i.e., science/mathematical basis) A computer implementation description (i.e., method of solution) A computer implementation (i.e., code)
Engineering Review Board (AERB)	Interdisciplinary board of scientific and engineering personnel responsible for the approval and disposition of algorithm acceptance, verification, development and testing transitions. Chaired by the Data Process Algorithm Lead, members include representatives from STAR, DPMS, IDPS, and Raytheon.
Algorithm Verification	Science-grade software delivered by an algorithm provider is verified for compliance with data quality and timeliness requirements by Algorithm Team science personnel. This activity is nominally performed at the IWPTB facility. Delivered code is executed on compatible IWPTB computing platforms. Minor hosting modifications may be made to allow code execution. Optionally, verification may be performed at the Algorithm Provider's facility if warranted due to technical, schedule or cost considerations.
Ancillary Data	Any data which is not produced by the JPSS System, but which is acquired from external providers and used by the JPSS system in the production of JPSS data products.
Auxiliary Data	Auxiliary Data is defined as data, other than data included in the sensor application packets, which is produced internally by the JPSS system, and used to produce the JPSS deliverable data products.
EDR Algorithm	Scientific description and corresponding software and test data necessary to produce one or more environmental data records. The scientific computational basis for the production of each data record is described in an OAD. At a minimum, implemented software is science-grade and includes test data demonstrating data quality compliance.
Environmental Data Record (EDR)	[IORD Definition] Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.). [Supplementary Definition] An Environmental Data Record (EDR) represents the state of the environment, and the related information needed to access and understand the record. Specifically, it is a set of related data items that describe one or more related estimated environmental parameters over a limited time-space range. The parameters are located by time and Earth coordinates. EDRs may have been resampled if they are created from multiple data sources with different sampling patterns. An EDR is created from one or more JPSS SDRs or EDRs, plus ancillary environmental data provided by others. EDR metadata contains references to its processing history, spatial and temporal coverage, and quality.
Operational Code	Verified science-grade software, delivered by an algorithm provider and verified by IWPTB, is developed into operational-grade code by the IDPS IPT.
Operational-Grade Software	Code that produces data records compliant with the System Specification requirements for data quality and IDPS timeliness and operational infrastructure. The software is modular relative to the IDPS infrastructure and compliant with IDPS application programming interfaces (APIs) as specified for TDR/SDR or EDR code.

Term	Description
Raw Data Record	[IORD Definition]
(RDR)	Full resolution digital sensor data, time referenced and earth located, with absolute radiometric and geometric calibration coefficients appended, but not applied, to the data. Aggregates (sums or weighted averages) of detector samples are considered to be full resolution data if the aggregation is normally performed to meet resolution and other requirements. Sensor data shall be unprocessed with the following exceptions: time delay and integration (TDI), detector array non-uniformity correction (i.e., offset and responsivity equalization), and data compression are allowed. Lossy data compression is allowed only if the total measurement error is dominated by error sources other than the data compression algorithm. All calibration data will be retained and communicated to the ground without lossy compression.
	A Raw Data Record (RDR) is a logical grouping of raw data output by a sensor, and related information needed to process the record into an SDR or TDR. Specifically, it is a set of unmodified raw data (mission and housekeeping) produced by a sensor suite, one sensor, or a reasonable subset of a sensor (e.g., channel or channel group), over a specified, limited time range. Along with the sensor data, the RDR includes auxiliary data from other portions of JPSS (space or ground) needed to recreate the sensor measurement, to correct the measurement for known distortions, and to locate the measurement in time and space, through subsequent processing. Metadata is associated with the sensor and auxiliary data to permit its effective use.
Retrieval Algorithm	A science-based algorithm used to 'retrieve' a set of environmental/geophysical parameters (EDR) from calibrated and geolocated sensor data (SDR). Synonym for EDR processing.
Science Algorithm	The theoretical description and a corresponding software implementation needed to produce an NPP/JPSS data product (TDR, SDR or EDR). The former is described in an OAD. The latter is typically developed for a research setting and characterized as "science-grade".
Science Algorithm Provider	Organization responsible for development and/or delivery of TDR/SDR or EDR algorithms associated with a given sensor.
Science-Grade Software	Code that produces data records in accordance with the science algorithm data quality requirements. This code, typically, has no software requirements for implementation language, targeted operating system, modularity, input and output data format or any other design discipline or assumed infrastructure.
SDR/TDR Algorithm	Scientific description and corresponding software and test data necessary to produce a Temperature Data Record and/or Sensor Data Record given a sensor's Raw Data Record. The scientific computational basis for the production of each data record is described in an Operational Algorithm Document (OAD). At a minimum, implemented software is science-grade and includes test data demonstrating data quality compliance.

Tours	Description
Term	Description
Sensor Data Record (SDR)	[IORD Definition] Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to calibrated brightness temperatures with associated ephemeris data. The existence of the SDRs provides reversible data tracking back from the EDRs to the Raw data.
	[Supplementary Definition]
	A Sensor Data Record (SDR) is the recreated input to a sensor, and the related information needed to access and understand the record. Specifically, it is a set of incident flux estimates made by a sensor, over a limited time interval, with annotations that permit its effective use. The environmental flux estimates at the sensor aperture are corrected for sensor effects. The estimates are reported in physically meaningful units, usually in terms of an angular or spatial and temporal distribution at the sensor location, as a function of spectrum, polarization, or delay, and always at full resolution. When meaningful, the flux is also associated with the point on the Earth geoid from which it apparently originated. Also, when meaningful, the sensor flux is converted to an equivalent top-of-atmosphere (TOA) brightness. The associated metadata includes a record of the processing and sources from which the SDR was created, and other information needed to understand the data.
Temperature Data	[IORD Definition]
Temperature Data Record (TDR)	[IORD Definition] Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts.
Temperature Data Record (TDR)	[IORD Definition] Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts. [Supplementary Definition]
Temperature Data Record (TDR)	 [IORD Definition] Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts. [Supplementary Definition] A Temperature Data Record (TDR) is the brightness temperature value measured by a microwave sensor, and the related information needed to access and understand the record. Specifically, it is a set of the corrected radiometric measurements made by an imaging microwave sensor, over a limited time range, with annotation that permits its effective use. A TDR is a partially-processed variant of an SDR. Instead of reporting the estimated microwave flux from a specified direction, it reports the observed antenna brightness temperature in that direction.
Temperature Data Record (TDR) Model Validation	 [IORD Definition] Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant calibration data counts and ephemeris data to revert from T-sub-a into counts. [Supplementary Definition] A Temperature Data Record (TDR) is the brightness temperature value measured by a microwave sensor, and the related information needed to access and understand the record. Specifically, it is a set of the corrected radiometric measurements made by an imaging microwave sensor, over a limited time range, with annotation that permits its effective use. A TDR is a partially-processed variant of an SDR. Instead of reporting the estimated microwave flux from a specified direction, it reports the observed antenna brightness temperature in that direction. The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. [Ref.: DoDD 5000.59-DoD Modeling and Simulation Management]

4.2 Acronyms

Below is a list of acronyms most applicable for this OAD.

Term	Description
AM&S	Algorithms, Models & Simulations
API	Application Programming Interfaces
DMS	Data Management Subsystem
DQTT	Data Quality Test Table
E&A	Ephemeris and Attitude
FPA	Focal Plane Array
HAM	Half Angle Mirror
H-S	Harvey-Shack

Term	Description
IEO	Instrument Engineering Order
IET	IDPS Epoch Time
IMG	Imagery
INF	Infrastructure
ING	Ingest
IPO	Input Processing Output
LOS	Loss of Signal
LUT	Look-Up Table
MOD	Moderate
NCSA	National Center for Supercomputing Applications
РО	Product Order
QF	Quality Flag
RTA	Rotating Telescope Assembly
SDR	Sensor Data Record
SI	International System of Units