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1.0 INTRODUCTION 

1.1 Objective 

The purpose of the Operational Algorithm Description (OAD) document is to express, in 
computer-science terms, the remote sensing algorithms that produce the Joint Polar Satellite 
System (JPSS) end-user data products.  These products are individually known as Raw Data 
Records (RDRs), Temperature Data Records (TDRs), Sensor Data Records (SDRs) and 
Environmental Data Records (EDRs).  In addition, any Intermediate Products (IPs) produced in 
the process are also described in the OAD. 

The science basis of an algorithm is described in a corresponding Algorithm Theoretical Basis 
Document (ATBD).  The OAD provides a software description of that science as implemented in 
the operational ground system. 

The purpose of an OAD is two-fold: 

1. Provide initial implementation design guidance to the operational software developer. 
2. Capture the “as-built” operational implementation of the algorithm reflecting any changes 

needed to meet operational performance/design requirements. 

An individual OAD document describes one or more algorithms used in the production of one or 
more data products.  There is a general, but not strict, one-to-one correspondence between 
OAD and ATBD documents. 

1.2 Scope 

The scope of this document is limited to the description of the core operational algorithm(s) 
used by all the sensors to create the specific sensor’s geolocation products.  Because the CMN 
GEO library of functions was derived from the VIIRS SDR Geolocation module (science code), 
no CMN GEO Algorithm Theoretical Basis Document (ATBD) was provided.  Therefore the 
theoretical basis for this algorithm is described in Section 3.3 of the VIIRS Geolocation 
Algorithm Theoretical Basis Document (ATBD), D0001-M01-S01-004. 

1.3 References 

1.3.1 Document References 

The CMN GEO library of functions was derived from the VIIRS SDR Geolocation module 
(science code) and therefore the software documents relevant to the algorithm described in this 
OAD are listed Table 1. 

Table 1. Reference Documents 

Document Title Document Number/Revision Revision 
Date 

VIIRS Geolocation Algorithm Theoretical Basis Document 
(ATBD) 

D0001-M01-S01-004 Latest 

Joint Polar Satellite System (JPSS) Algorithm Specification 
Part 08 

474-00448-01-08_JPSS-SRS-Vol-I-
Part-08 

Latest 
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Document Title Document Number/Revision Revision 
Date 

474-00448-02-08_JPSS-DD-Vol-II-
Part-08 

474-00448-03-08_JPSS-OAD-Vol-III-
Part-08 

474-00448-04-08_JPSS-SRSPF-Vol-
IV-Part-08 

Joint Polar Satellite System (JPSS) Algorithm Specification 
Part 06 

474-00448-02-06_JPSS-DD-Vol-II-
Part-06 

Latest 

Joint Polar Satellite System (JPSS) Program Lexicon 470-00041 Latest 

Astronomical Algorithms, Willman-Bell Inc., Richmond VA 2nd Edition 1998 

USNO sers7 IERS Bulletin A NA NA 

NGST/SE technical memo – 
NPP_Geo_B1.4OpsDelivery_CheckoutSummary 

NP-EMD-2006.510.0073 03 Oct 2006

NGST/SE technical memo – 
Geo_CmnGeoMissingEphemAttitude 

NP-EMD-2007.510.0023 16 Mar 2007

NGST/SE technical memo – 
NPP_Geo_CmnGeoMissingEphemAttitude_RevA 

NP-EMD-2007.510.0023 Rev. A 31 Jul 2007 

NGST/SE technical memo – 
050808_SDRL141CmnGeoOAD_NGSTcomments 

NP-EMD.2005.xxx.xxxx 08 Aug 2005

NGST/SE technical memo – EM050106Parameters-M NP-EMD-2005.510.0004 06 Jan 2005

NGST/SE technical memo – EM050520EncInterp-M INP-EMD-2005.510.0059 20 May 2005

NGST/SE technical memo – Eclipse Memo NP-EMD-2005.510.0087 01 Aug 2005

NGST/SE technical memo – SAA Memo NP-EMD.2005-510.0089 01 Aug 2005

NGST/SE technical memo – Glint Memo NP-EMD-2005.510.0090 04 Aug 2005 

NGST/SE technical memo – VIIRS SDR OAD Updates to the 
Geolocation Parameters Table 

NP-EMD-2009.510.0033 12 Oct 2009

 

1.3.2 Source Code References 

The science and operational code and associated documentation relevant to the algorithms 
described in this OAD are listed in Table 2. 

Table 2. Source Code References 

Reference Title Reference Tag/Revision Revision Date 

Unit Test Data N/A N/A 

VIIRS SDR GEO science-grade software (original 
reference source) 

N/A N/A 

Common Geolocation operational software N/A N/A 

NGST/SE technical memo – 
Geo_CmnGeoMissingEphemAttitude 

NP-EMD-2007.510.0023 16 Mar 2007 

NGST/SE technical memo – 
NPP_Geo_CmnGeoMissingEphemAttitude_RevA 

NP-EMD-2007.510.0023 Rev. A 31 Jul 2007 

NGST/SE technical memo – Eclipse Memo NP-EMD-2005.510.0087 01 Aug 2005 

NGST/SE technical memo – SAA Memo NP-EMD.2005-510.0089 01 Aug 2005 

NGST/SE technical memo – Glint Memo NP-EMD-2005.510.0090 04 Aug 2005  
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Reference Title Reference Tag/Revision Revision Date 

OAD – ProSdrCmnGeo  Build 1.5.PRO MAY (OAD Rev. A6) 20 Jun 2007 

OAD – ProSdrCmnGeo  1.5.x.1-H (PCR018815) (OAD Rev. A8) 
1.5.x.1-J (PCR019133) 

30 Oct 2008 
22 Dec 2008 

ACCB OAD Rev A 22 Apr 2009 

PCR21465 Sensor Characterization Build SC-6 (OAD 
Rev-B1) 

21 Jan 2010 

PCR028343 (OAD only) (OAD Rev B3) 04 Nov 2011 

OAD transitioned to JPSS Program – this table is no longer updated. 
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2.0 ALGORITHM OVERVIEW 

The purpose of the CMN GEO library of functions is to implement reusable functions for multiple 
SDR software modules.  All SDR modules perform the same basic operations for geolocation 
(summarized in Figure 1 below).  The calculation unique to the SDR is determining the view 
vector (aka exit vector) from the instrument.  The functions common to all SDR modules make 
up the CMN GEO library. 

CMN GEO is used to determine geodetic longitude and latitude both to the WGS84 ellipsoid and 
the local terrain height.  Additionally, CMN GEO determines derived products such as satellite 
zenith and azimuth angles, solar zenith and azimuth angles, and (for the VIIRS Day/Night band 
(DNB)) lunar zenith and azimuth angles.  CMN GEO also has routines that calculate vectors to 
the Sun or Moon in sensor frame coordinates and determines if the moon is in the space view or 
sun in the solar diffuser look.  See Figure 1 for an example of the CMN GEO processing chain 
in an SDR algorithm.  Note that steps 4d, 4e, and 4f are for Terrain Correction (described in 
section 2.1.2.5) and do not apply to all SDRs.  Validation of spacecraft ephemeris and attitude 
(E&A) data is performed when the E&A packets are read and the data byte aligned.  This allows 
the SDR module to make some decisions about graceful degradation before processing begins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Common Geolocation Processing Chain 

4 – For each pixel: 
a. Determine geodetic latitude, 

longitude intersection with ellipsoid; 
satellite azimuth and zenith 

b. Calculate solar azimuth and zenith 
c. Calculate lunar azimuth and zenith 

(VIIRS DNB only) 
d. Adjust geodetic latitude and longitude  

for terrain height 
e. Adjust azimuth and zenith satellite  

angles for terrain height 
f. Adjust azimuth and zenith solar 

angles for terrain height 

3 – For each scan: Vectors to 
sun (VIIRS Solar Diffuser) and 
moon (Space View port). 

2 – Build ephemeris and 
attitude data for the granule 

1 – Initialize ProSdrCmnGeo 
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2.1 Common Geolocation Description 

2.1.1 Interfaces 

Each of the CMN GEO functions is called within the SDR processing.  In addition to the internal 
interface with the SDR processing algorithm, CMN GEO has an external (Input Only) interface 
with the Data Management Subsystem (DMS) to retrieve planetary ephemeris, polar wander, 
digital elevation model data, Two Line Element (TLE) data, and South Atlantic Anomaly (SAA) 
algorithm coefficients.  CMN GEO does not create the Geolocation products or store them in 
DMS for delivery.  CMN GEO uses the Naval Observatory Vector Astronomy System (NOVAS) 
libraries to perform some coordinate transformations and retrieve solar and lunar zenith and 
azimuth angles.  Some minor modifications have been made to the Naval Observatory Vector 
Astronomy System – C version (NOVAS-C) package to support the interface.  CMN GEO uses 
ProCmnMath for vector and matrix arithmetic and CMN GEO uses the Infrastructure (INF) Time 
Utility for time calculations and conversions. 

2.1.1.1 Inputs 

See Table 3 for the CMN GEO library internal inputs.  Refer to 474-00448-01-08_JPSS-SRS-
Vol-I-Part-08, Table 3-1 (rows 1-4) for the external inputs acquired from DMS.  Detailed 
descriptions of the external inputs and LUTs are referenced below in Table 4. 

Table 3. Common Geolocation Library Inputs 

Input Type Description Units / Valid Range 

View Vector Binary Line-of-sight vector for instrument 
detector (sensor frame).   

 Unitless / -1.0 to 1.0 

Time Float64 IET Time associated with the view 
vector.  NOTE:  the time is set in 
the input point by calling satPosAtt() 
before calling ellipIntersect().  See 
each method for the actual 
parameters. 

Micro-seconds / 
1325376032000000  to 
2903299232999999 
(2000-01-01 
00:00:00.000000Z to 
2049-12-31 
23:59:59.999999Z) 

T_inst2sc Float64 / 
(3,3) 

3x3 Instrument to Spacecraft frame 
transformation matrix 

Unitless / 3x3 Identity 
matrix (this signifies no 
sensor mounting errors) 

Table 4. Common Geolocation External Inputs 

Input Description Document Reference 

rdrPtr Spacecraft Diary 
RDR/Spacecraft Telemetry 
RDR converted to the 
VerifiedRDR format. 

474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0. 

tblItemJPL_ Planetary Ephemeris 474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0. 
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Input Description Document Reference 

tblItemPWUT1_ Polar Wander 474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0 

tileArr_ Digital Elevation Model, array of 
Tiles used by the 
ProSdrTerrainCorrection C++ 
Class. 

474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0 

tblItemSAA_ SAA Algorithm Coefficients 474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0 

tblItemTLE_ Two Line Element 474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 4.0 

tblItemParamLut_ Common GEO Param Inputs 
(LUT) 

474-00448-02-
08_JPSS-DD-Vol-II-
Part-08, Section 
7.2.2.1 

 

 

2.1.1.2 Outputs 

See Table 5 for a summary of all of the CMN GEO library outputs.  A general output table is 
listed in 474-00448-01-08_JPSS-SRS-Vol-I-Part-08, Table 3-1 (rows denoted by “Common Geo 
Outputs” in column one).  NOTE:  The CMN GEO library does not directly output anything to 
DMS (shown in Table 3-1 of the SRS), so the outputs listed in Table 5 do not reflect the final 
Geo Product.  The CMN GEO library of functions return the angle outputs in radians for internal 
processing.  These parameters are converted to degrees in the PRO COMMON code prior to 
outputting to DMS.  These outputs are used for both Ellipsoid Intersection and optionally for 
Terrain Correction. 

Table 5. Common Geolocation Library Outputs 

Output Data 
Type/size 

Description Fill Value 

Latitude Float32  Geodetic latitude of the Earth sample in radians. -999.8 

Longitude Float32  Longitude of the Earth sample in radians. -999.8 

Surface Height Float32  Surface height in meters above mean sea level (MSL).. -999.8 

Ellipsoid-geoid 
separation 

Float32 EGM96 model of the vertical separation between the 
WGS84 Ellipsoid and the NIMA Geoid.  Value is in 
meters. 

-999.8 

Spacecraft Zenith 
angle 

Float32  Zenith angle of the spacecraft as viewed from the Earth 
sample location measured from the local normal in 
radians. 

-999.8 

Spacecraft  Azimuth 
angle 

Float32  Azimuth angle of the spacecraft as viewed from the 
Earth sample location measured from the local North 
towards East in radians.  

-999.8 

Solar zenith angle Float32  Zenith angle of the Sun as viewed from Earth sample 
location measured from the local normal in radians. 

-999.8 
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Output Data 
Type/size 

Description Fill Value 

Solar azimuth angle Float32  Azimuth angle of the Sun, as viewed from the Earth 
sample location measured from the local North towards 
East in radians. 

-999.8 

Lunar zenith angle  Float32  Zenith angle of the Moon, as viewed from the Earth 
sample location measured from the local normal in 
radians.  For VIIRS DNB only. 

-999.8 

Lunar azimuth angle  Float32  Azimuth angle of the Moon as viewed from the Earth 
sample location measured from the local North towards 
East in radians.  For VIIRS DNB only. 

-999.8 

Lunar Phase Float32 Lunar phase angle is the angle between the moon-to-
sun vector and the moon-to-ground point vector, 
computed once per granule at the mid-granule time.  
This parameter is computed for VIIRS DNB only.  This 
parameter is returned in radians. 

-999.8 

Moon vector Float32 Moon vector in spacecraft frame, at time sensor is at 
space view port, each component in meters to Moon. 

-999.8 for each 
component 

Sun vector 
 

Float32 
 

Sun vector in spacecraft frame, at time VIIRS is on the 
Solar Diffuser, each component in meters to the Sun. 

-999.8 for each 
component 

SAA intensity Float32 Estimated number of single event upsets per year, at a 
given time and location, due to increased radiation 
within the South Atlantic Anomaly. 

-999.5 

Sun glint angle Float32 Cosine of the sun glint angle, i.e., the angle between 
the viewing direction and the direction into which 
sunlight would be reflected by a specularly reflecting, 
flat, horizontal, surface. 

-999.5 

Lunar Eclipse Status bool True if a lunar eclipse is occurring at a given time. false 

Solar Eclipse Status bool True if a solar eclipse is occurring at a given time and 
location. 

false 

 

2.1.2 Algorithm Processing 

The following is an overview of functionality implemented by the CMN GEO library of functions.  
The functions and methods are divided into several groups and each function is described in 
more detail in the following subsections.  Some functions are used internally to Cmn Geo to 
perform various calculations, while others are provided as an interface for an algorithm to use 
the Cmn Geo library.  These interface functions are labeled ‘public’ in the detailed descriptions 
provided below. 

1. The Initialization and Termination Functions in section 2.1.2.1 are used to create an 
instance to use when calling the Cmn Geo library and for cleaning up the class after it 
has been used.  These methods retrieve any inputs needed by Cmn Geo and provide 
access to the library of functions. 

2. The Functions for Ephemeris and Attitude Processing in section 2.1.2.2 are used for 
processing the ephemeris and attitude data so that Cmn Geo can use it to calculate 
spacecraft position.  These functions detect and fill any possible gaps in the attitude and 
ephemeris data and to calculate the sub satellite point on the earth.  Most of them are 
used internally to Cmn Geo, they may retrieve inputs from DMS, if needed, and do not 
have external interfaces to be used by an algorithm. 
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3. The Functions for Coordinate Transformation and Ellipsoid Intersection in section 2.1.2.3 
are used for calculating the ellipsoid intersection and performing various coordinate 
transformations.  Most of these functions are only used internally by Cmn Geo. 

4. The Functions for Retrieving Solar and Lunar Geometry in section 2.1.2.4 are used for 
determining angles to the sun or moon relative to the spacecraft or the point on the 
ground.  This group also includes functions for checking for sun glint, the presence of 
solar or lunar eclipse, and whether the sun or moon are in the view of the solar diffuser 
or the spaceview.  The sunAngles and moonAngles methods can be used to adjust the 
specified angles for Terrain Correction after having determined the terrain corrected 
latitudes and longitudes. 

5. A detailed description of Adjusting Geolocation for Terrain is given in section 2.1.2.5 and 
the functions used for performing Terrain Correction are listed in section 2.1.2.6. 

6. The Functions for South Atlantic Anomaly in section 2.1.2.7 are used for estimating the 
likelihood of increased radiation within the South Atlantic Anomaly (SAA). 

2.1.2.1 Initialization/Termination Functions of the ProSdrCmnGeo Singleton Class 

2.1.2.1.1 getInstance() - public 

This function returns a pointer to an instance of the ProSdrCmnGeo class.  If an instance needs 
to be created, it is created.  The function initCmnGeo() is called to initialize this new instance.   

2.1.2.1.2 clear() : void - public 

This function is called by the SDR process to clear the ephatt_ structure.  This function must be 
called before calling setupEphatt(). 

2.1.2.1.3 initCmnGeo() 

This initializes ProSdrCmnGeo with static ancillary data from DMS and initializes structures 
used by NOVAS-C.  The static ancillary data used by NOVAS-C is the JPL Planetary Ephemeris 
and the Polar Wander / UT1-UTC data from USNO sers7 IERS Bulletin A. 

2.1.2.1.4 getDMSClient() 

This function returns a pointer to the DMS client that CMN GEO is using. 

2.1.2.1.5 getShortName() 

This function is called to retrieve the Collection Short Name’s (CSN) for the polar wander and 
planetary ephemeris data. 

2.1.2.2 Functions for Ephemeris and Attitude Processing 

2.1.2.2.1 setupEphAtt() - public 

This function reads the spacecraft E&A byte-aligned Raw Data Records (RDR) for the start/stop 
time of the granule and places the data into the ephemeris and attitude structure (ephatt_). 
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2.1.2.2.2 satPosAtt() - public 

Given the observation time, this function finds a point in the ephatt_ points map field for the 
specified time.  The point found is used by ellipIntersect() to determine the location on the earth. 

2.1.2.2.3 fillEphAttPoint() 

Given the byte-aligned ephemeris and attitude data, this function fills one point of information in 
the map of points in the ephatt_ structure.  (It calculates the geodetic latitude, geocentric 
latitude, longitude, etc.) 

2.1.2.2.4 initPointsMap() 

This function initializes the points map in the ephatt_structure.  

2.1.2.2.5 buildQuatMatrix() 

This function builds the quaternion matrix. 

2.1.2.2.6 getEAPointMap() 

This function returns the ephemeris and attitude data in a Standard Template Library(STL) map 
object. 

2.1.2.2.7 buildECIOrbFrame() 

This function uses the ECI position and velocity to build the Orbit Frame matrix. The z-axis 
vector is based on the ECR position (rPos) and the z-axis unit vector is rotated to ECI. 

2.1.2.2.8 detectAndFillGaps() 

This function determines if there are any missing S/C Ephemeris & Attitude data points and fill in 
those missing points to create E&A data sampled at one second intervals. 

2.1.2.2.9 quadraticInterpAtt() 

This function performs Quadratic Interpolation of the three Attitude input points for the time 
specified in the output point. 

2.1.2.2.10 quadraticInterpEph() 

This function performs Quadratic Interpolation of the three Ephemeris input points for the time 
specified in the output point. 
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2.1.2.2.11 hermitianInterpolation() 

This function performs Hermite Interpolation of the three Ephemeris input points for the time 
specified in the output point.  This function is optional and not normally included or used 
operationally.  The function exists in the Common GEO Library, but it must be enabled by 
compiling with the –DUSE_HERMITE compiler option.  Enabling this option turns off the use of 
quadraticInterpEph(). 

2.1.2.2.12 sgp4_predEA() 

This function calculates all of the ephemeris point data, for the satellite in the orbElem_ 
structure at the requested time. 

2.1.2.2.13 sgp4_rtrvTLE() 

This function retrieves the Two Line Element (TLE) strings from DMS and puts them into the 
Orbital Elements member variable. 

2.1.2.2.14 sgp4_TLE() 

This function calls the SGP4 twolinerv() method to convert TLE strings in the orbElem_ struct to 
the numbers needed by the SGP4 ephemeris prediction model. The output numbers are stored 
in orbElem_.  The initialization of the SGP4 toolkit is now handled internally by the twolinerv() 
method.  The sgp4() method returns space craft coordinates and velocity for the current time 
value.  This method is not actually part of Common Geo, but is now a direct call to the SGP4 
model which uses the C/C++ interfaces of the SGP4 model.  For more information, see Vallado, 
David A., Paul Crawford, Richard Hujsak, and T.S. Kelso, "Revisiting Spacetrack Report #3," 
presented at the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, 2006 August 
21–24; which can be found at the following URL:  
http://www.celestrak.com/publications/AIAA/2006-6753/ 

2.1.2.3 Functions for Coordinate Transformation and Ellipsoid Intersection. 

2.1.2.3.1 calcGDRollPitchYaw() 

This function transforms the ECI position, velocity, and quaternions to roll, pitch, and yaw in the 
ECI system. 

2.1.2.3.2 eciRPYtoQuat() 

This function uses the orbit frame and the ECI roll, pitch, and yaw to calculate quaternions. 

2.1.2.3.3 ellipIntersect() - public 

Given the sensor exit vector, the instrument mounting matrix, and the ephemeris and attitude 
(contained in the input sub-satellite point), this function calculates the geodetic latitude, 
longitude, and satellite azimuth and zenith angles of a pixel, for the point where the LOS 
intersects the WGS84 Ellipsoid.  The steps performed by this method are: 



OAD-Cmn-Geo  474-00091 
Effective Date: March 13, 2017 

Revision C 
 

 11  
Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. 

1) Convert a single pixel’s exit vector Line-of-Sight (LOS) to Spacecraft (S/C) coordinates 
using a transformation matrix that reflects the actual instrument mounting and sensor to 
spacecraft transformation. 

2) Use the quaternion matrix to rotate the corrected exit vector from S/C to ECI.  This is a 
simple matrix multiplication performed by matrixVectorProduct(). 

3) Convert the exit vector from ECI to ECR.  This step is performed by the convCoordSys() 
method using the input flag of ECI2ECR. 

4) Intersect each pixel’s line of sight with the WGS84 ellipsoid and output geodetic latitude, 
longitude. 

5) Compute derived ellipsoid geolocation products, such as solar and sensor azimuth and 
zenith angles, sensor range, and lunar azimuth and zenith angles.  Note:  lunar azimuth 
and zenith angles are used for VIIRS DNB only. 

2.1.2.3.4 calcSatAzmZen() – public 

This function calculates the satellite azimuth and zenith angles based on the input latitude, 
longitude, and sample-to-satellite vector. 

2.1.2.3.5 validLat() 

This function returns false if the value of latitude in radians is less than –PI/2 or greater than 
PI/2; otherwise returns true. 

2.1.2.3.6 validLon() 

This function returns false if the value of longitude in radians is less than –PI or greater than PI; 
otherwise returns true. 

2.1.2.3.7 getPolarUT1UTC() 

Given the IET observation time, this function finds the polar wander and Universal Time One 
(UT1) minus Universal Coordinated Time (UTC) data (the difference between UT1 and UTC 
reflects the Earth's rotation). 

2.1.2.3.8 convCoordSys() 

Given IET observation time, position, and velocity, this function converts position and velocity in 
ECR or ECI coordinates to ECI or ECR coordinates based on the direction specified by the 
convFlag.  Note: GPS uses the terms ECEF and ECSF.  ECEF=ECR and ECSF=ECI. 

This method uses the invPNSW() and invWobble() functions described below when converting 
from ECI to ECR.  When converting from ECR to ECI, the non-inverse functions provided in 
NOVAS-C are used.  Note that there are no inverse functions implemented for the NOVAS-C 
functions precession(), nutate(), or spin() because they have an inverse capability built into them 
already. 

2.1.2.3.9 tdb2tdt() 
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NOVAS-C function is used for time conversion from Solar System Barycentric time to Terrestrial 
Dynamic time. 

2.1.2.3.10 earthtilt() 

NOVAS-C function is used for changes of obliquity and application of the equation of equinoxes. 

2.1.2.3.11 sideral_time() 

NOVAS-C function is used to convert rotation of the earth to Greenwich hour angle. 

2.1.2.3.12 convVec2LatLon() 

This converts the position vector into geodetic latitude, geocentric latitude, and longitude. 

2.1.2.3.13 ecr2Eci()  - public 

This function converts position and velocity vectors from ECR to ECI coordinates.  This function 
calls convCoordSys() to do the conversion. 

2.1.2.3.14 eci2Ecr()  - public 

This function converts position and velocity vectors from ECI to ECR coordinates.  The function 
calls convCoordSys() to do the conversion. 

2.1.2.3.15 eciRPYtoQuat() 

This function converts roll, pitch, and yaw to the four quaternion components. 

2.1.2.3.16 invPNSW() 

This function performs the inverse of the NOVAS-C function pnsw().  It is used by the 
convCoordSys() method to convert from ECI coordinates to ECR coordinates. 

The NOVAS-C function pnsw() transforms a vector from an Earth-fixed geographic system to a 
space-fixed system based on mean equator and equinox of J2000.0 while applying rotations for 
wobble, spin, nutation, and precession.  The inverse function performs the inverse calculations, 
but in reverse order. 

2.1.2.3.17 invWobble() 

This function performs the inverse of the NOVAS-C function wobble().  It is used by the 
convCoordSys() method to convert from ECI coordinates to ECR coordinates. 

The NOVAS-C function wobble() corrects Earth-fixed geocentric rectangular coordinates for 
polar motion.  It transforms a vector from Earth-fixed geographic system to a rotating system 
based on rotational equator and orthogonal Greenwich meridian through axis of rotation.  The 
inverse function performs the rotation in the opposite direction. 
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2.1.2.4 Functions for Retrieving Solar and Lunar Geometry 

2.1.2.4.1 sunAngles() - public 

Given the IET observation time, geodetic latitude and longitude in radians, this function 
calculates the azimuth and zenith angles in radians of the Sun.  This function calls 
sunMoonAngles() to calculate these values. 

2.1.2.4.2 vectorAtSat()  - public 

Given the interpolated ephemeris and attitude data and flag specifying sun or moon, this 
function calculates the x, y, z vector to the Sun or Moon in spacecraft frame at the location of 
the satellite.  Units are in meters. 

2.1.2.4.3 moonInView()  - public 

Given the vector to the moon (SC frame), sensor to SC rotation matrix, and sensor mounting 
error matrix, this function is used to determine whether the moon is in the spaceview.  This 
function calls satPosAtt(), vectorAtSat(), and objectInView(). 

2.1.2.4.4 sunInView() - public 

Given the vector to the sun (SC frame), sensor to SC rotation matrix, sensor mounting error 
matrix, this function is used to determine whether the sun is in the solar diffuser.  This function 
calls satPosAtt(), vectorAtSat(), and objectInView(). 

2.1.2.4.5 moonAngles()  - public 

Given the IET observation time, geodetic latitude and longitude in radians, this function 
calculates the azimuth and zenith angles of the Moon in radians.  It also calculates the Moon 
phase in radians and the Moon illumination fraction.  This function calls the sunMoonAngles() to 
calculate these values. 

2.1.2.4.6 sunMoonAngles()  - public 

This function is called by sunAngles() and moonAngles() to calculate the values described in 
those functions. 

2.1.2.4.7 objectInView() 

This function calculates the angle between a vector in spacecraft coordinates to an object (Sun 
or Moon) and an exit vector from a sensor (solar diffuser or spaceview port). 

2.1.2.4.8 ascendDescendIndicator() - public 

This function determines whether a granule is ascending or descending for a specific time. 

2.1.2.4.9 vectorAtGeoCenter() 
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This function calculates a vector from the center of the earth to either the Sun or the Moon.  The 
vector components are in meters and the coordinate system is ECI, J2000. 

2.1.2.4.10 vectorAtOrbitFrame() 

This function calculates a vector in the orbit frame from the S/C to either the Sun or the Moon.  
The vector components are in meters. 

2.1.2.4.11 calcSunGlintAngle() 

Given a satellite’s azimuth and zenith angles and solar azimuth and zenith angles, this function 
computes the sun glint angle, i.e., the angle between the viewing direction and the direction into 
which sunlight would be reflected by a specularly flat, horizontal, surface.  Note that for 
efficiency, the value returned is actually the cosine of the angle and not the angle itself. 

Inputs: 

1. inSatAzm - Input satellite azimuth angle in radians 

2. inSatZen - Input satellite zenith angle in radians 

3. inSunAzm - Input sun azimuth in radians 

4. inSunZen - Input sun zenith in radians 

Outputs: 

1. outCosReflAngle - Cosine of the reflected sun angle.  

2. return status - PRO_SUCCESS or an error code 

As per Tech Memo, Source of Glint Data, 2005/08/04 (NP-EMD.2005.510.0090), the formula for 
sun glint is that used by the VIIRS Cloud Mask algorithm.  Note that it is the cosine of the angle 
that is returned and not the angle itself.  The calculations below are identical to the IDPS 
implementation of the Sun Glint calculation in the ProSdrCmnGeo::calcSunGlintAngle() method 
and to the implementation of the Sun Glint calculation in the VIIRS CloudMask sun_glint() 
method.  Also note that both of these implementations are mathematically identical to, but more 
efficient than, the calculation in the Tech Memo.  See the derivation below. 

zenCosMinus = cos(inSunZen – inSatZen) 

 zenCosPlus = cos(inSunZen + inSatZen) 

 outCosReflAngle =  0.5 * ((zenCosMinus + zenCosPlus) + 

                    ((zenCosMinus - zenCosPlus) * 

            cos(PI - (inSatAzm - inSunAzm)))); 

The zenith angle is measured from the vertical to the line-of-sight vector to the satellite or solar 
position; the azimuth angle is measured clockwise from north.  At the poles, zero azimuth is 
along the Prime Meridian.  Figure 2 below illustrates the definition of the angles. 
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Figure 2. Azimuth – Zenith Coordinates 

 

 

2.1.2.4.12 Sun Glint Angle derivation 

The equation in the Tech Memo, Source of Glint Data, 2005/08/04 (NP-EMD.2005.510.0090), is 
as follows (using the angle names from the Cmn Geo code): 

 

 cos(ReflAngle) =  sin(inSatZen)*sin(inSunZen) * 

            cos(180 – (inSunAzm – inSatAzm)) + 

           cos(inSatZen) * cos(inSunZen);  (1) 

 

By Trigonometric identity: 

 cos(A)*cos(B) = ½*cos(A-B) + ½*cos(A+B)   (2) 
sin(A) * sin(B) = ½*cos(A-B) - ½*cos(A+B)   (3) 

 

Substituting (2) & (3) into (1) gives: 

cos(ReflAngle) = 

 [½*cos(inSatZen - inSunZen) - ½*cos(inSatZen + inSunZen)] * 

  cos(180 – (inSunAzm – inSatAzm)) + 

North 

East 

Up (normal to surface) 

Viewing location 
(earth’s surface) 



Sun or 
Satellite 
Position 

 = zenith angle 
 = azimuth angle
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 [½*cos(inSatZen - inSunZen) + ½*cos(inSatZen + inSunZen)] (4) 

 

Simplifying (4) gives: 

cos(ReflAngle) = 

 ½ *  [ (cos(inSatZen - inSunZen) - cos(inSatZen + inSunZen)) * 

   cos(180 – (inSunAzm – inSatAzm))   + 

  (cos(inSatZen - inSunZen) + cos(inSatZen + inSunZen)) ] (5) 

 

Using the following definitions and substituting into (5) gives: 

zenCosMinus = cos(inSatZen – inSunZen)    (6) 

 zenCosPlus = cos(inSatZen + inSunZen)      (7) 

cos(ReflAngle) = 

 ½ *  [(zenCosMinus - zenCosPlus) * 

   cos(180 – (inSunAzm – inSatAzm)) + 

   (zenCosMinus + zenCosPlus) ]     (8) 

 

Equation (8) can be reordered as: 

cos(ReflAngle) = 

 ½ *  [(zenCosMinus + zenCosPlus) + 

   (zenCosMinus - zenCosPlus) * 

   cos(180 – (inSunAzm – inSatAzm)) ]  (9) 

 

The Cmn Geo code uses the following definitions as copied from the previous section 
2.1.2.4.11:  

zenCosMinus = cos(inSunZen – inSatZen)    (10) 

 zenCosPlus = cos(inSunZen + inSatZen)      (11) 

 

Rewriting Equations (6) and (7) by reordering the angles gives: 

zenCosMinus = cos(  – (inSunZen – inSatZen) )    (12) 

 zenCosPlus = cos(inSunZen + inSatZen)      (13) 

 

By the trigonometric identity, cos(A) = cos(-A), Equation (12) is identical to Equation 
(10) and by the commutative property, Equation (11) is identical to Equation (13).  
Finally, note that there is a difference in the order of the angles in the cosine term in 
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Equation (9) and the equation implemented by the Cmn Geo code.  Writing only these 
two cosine terms for clarification: 

cos(180 – (inSunAzm – inSatAzm))   (14 – from Tech Memo) 

cos(180 – (inSatAzm – inSunAzm))   (15 – From Cmn Geo) 

 

Rewriting Equation (14) gives: 

cos(180 – ( – inSatAzm + inSunAzm))      or 

cos(180 + (inSatAzm – inSunAzm))     (16) 

 

By using the two trigonometric identities: 

cos(180 – A) = – cos(A), and 

cos(180 + A) = – cos(A) 

 

Equation (16) is identical to Equation (15) used by the Cmn Geo code and rewriting 
Equation (9) using this identity becomes: 

cos(ReflAngle) = 

 ½ *  [(zenCosMinus + zenCosPlus) + 

   (zenCosMinus - zenCosPlus) * 

   cos(180 – (inSatAzm – inSunAzm)) ]  (17) 

Therefore, the definitions defined in the Tech Memo, Source of Glint Data, 2005/08/04 (NP-
EMD.2005.510.0090), using Equation (1) can be rewritten as Equation (17) as it is used in the 
Common Geolocation and VIIRS Cloud Mask code as they are mathematically identical.  
Furthermore, the computational benefit to using the Equation (17) over Equation (1) is that only 
three cosines are computed as opposed to three cosines and two sines. 

 

2.1.2.4.13 checkLunarEclipse() 

Check if a lunar eclipse is occurring at the given time according to the algorithms of Jean 
Meeus1 and return true if one is occurring or false if not.  A summary of the basic algorithm 
steps are as follows: 

• Check if Moon phase and eclipse data has been cached and if so, check if the data 
spans the requested time. 

• If the data does not span the requested time, then perform Moon phase calculations to 
determine the time of the nearest three Full Moons. 

                                            
1 Meeus, Jean, “Astronomical Algorithms, 2nd Edition,” Willman-Bell Inc., Richmond VA, 1998, 477 pp.  
Chapter 54, Eclipses, pages 379-388 describes the eclipse algorithms and includes calculations from 
Chapter 49, Phases of the Moon, pages 349-350. 
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• Perform shadow calculations to determine if the Moon is in eclipse at the time of 
each Full Moon. 

• Cache the phase and associated eclipse data for the three lunar cycles (this 
eliminates the need for recalculation until input times change by 2-4 weeks). 

• Check if the nearest Full Moon is in eclipse, and if so, if the period of eclipse spans the 
requested time.  If it does, then a lunar eclipse occurring. 

For efficiency reasons, this function does not check local conditions, i.e., it does not check 
visibility of the Moon at a given ground location.  If the Moon is in eclipse at the requested time, 
the invoking algorithms need to verify the Moon is visible at the scan/pixel location.  Since the 
invoking algorithms already have Moon zenith angles available, it is more efficient for them to 
check the angles than for this method to compute new zenith angles. 

2.1.2.4.14 checkSolarEclipseInitial() 

Check if a solar eclipse is occurring at the given time according to the algorithms of Jean 
Meeus1 and return true if one is occurring or false if not.  A summary of the basic algorithms 
steps are: 

• Check if Moon phase and eclipse data has been cached and if so, check if the data 
spans the requested time. 

• If the data does not span the requested time, then perform Moon phase calculations to 
determine the time of the nearest three New Moons. 

• Perform shadow calculations to determine if the Sun is in eclipse at the time of 
each New Moon. 

• Cache the phase and associated eclipse data for the three lunar cycles (this 
eliminates the need for recalculation until input times change by 2-4 weeks). 

• Check if the nearest New Moon is in eclipse, and if so, if the period of eclipse spans the 
requested time.  If it does, then a solar eclipse occurring. 

Note that this function does not perform detailed checks of local conditions.  If this function 
returns true, and the sun is above the horizon at the desired location, then 
checkSolarEclipseFinal should be called to verify eclipse at that location.   

2.1.2.4.15 checkSolarEclipseFinal() 

Check if a solar eclipse is occurring at the given time and ground location, using detailed 
NOVAS routines.  A summary of the basic algorithms steps are: 

 Use NOVAS routines to get apparent position vectors of the Sun and Moon at a test location 
and time. 

 Using the radius of the Sun and Moon and the distance to each, calculate the apparent disk 
size of both.  The sum of the two half-disk sizes becomes a test angle. 

 Use the vector dot product to determine the actual angle between the Sun and Moon 
vectors. 

 If the actual angle is less than the test angle, then the Solar Eclipse flag is true. 
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For efficiency reasons, it is assumed that the invoking algorithm has verified the Sun is visible at 
the given ground location prior to calling this routine; checkSolarEclipseFinal does not re-check 
visibility of the Sun. 

2.1.2.5 Adjusting Geolocation for Terrain 

This section describes the implementation for adjusting the geolocation for terrain height.  The 
method employed is slightly different than that described in the ATBD, but starting with the 
geodetic latitude and longitude along with satellite zenith angle and azimuth angle, the 
geolocation is adjusted for terrain through application of the following steps. 

1) The TERECO DB is accessed to obtain the Mean Sea Level (MSL) surface height (SRTM30 
Version 2) and Ellipsoid-Geoid Separation (EGM96) at the input point.  The surface height 
above the Ellipsoid is calculated by adding those two together. 

a) If the surface height at the ellipsoid intersection, and the satellite zenith angle, combine 
to indicate that the potential horizontal correction is less than N meters (N is a 
configuration data item currently set to 35 meters), then we copy the ellipsoid 
intersection location to the terrain corrected geolocation object and skip to step 6. 

b) If the maximum and minimum surface height both equal 0 this is an ocean pixel.  
Determine the point where the LOS emerges from the ocean and correct the latitude and 
longitude for this location. 

c) The starting LOS point is initially set to the ellipsoid intersection point.  If the Earth 
surface is below the ellipsoid, then we move the starting LOS point to an altitude of -600 
meters and the starting distance angle is calculated.  This is the angle measured at the 
center of the Earth from the ellipsoid intersection point to the starting LOS point (farthest 
from satellite).  The following equation is used to calculate this negative distance angle: 

dstang_I = elos_hgt * (tan (zenith) ) / earth_radius; 

where: 

dstang_I is the distance angle measured at the center of the Earth, from the 
input point to the LOS starting point farthest from the satellite 

elos_height is maximum height 32km around this point in the TERECO DB 

zenith is the input spacecraft zenith angle, determined from Ellipsoid Intersection 
angle 

earth_radius is the radius of the Earth at the input latitude (i.e.latitude of 
Ellipsoid Intersection point) 

d) The ending LOS point is calculated using the maximum height 32km around the ellipsoid 
intersection point in the TERECO DB.  The equation above is used to estimate the 
distance to the end of the LOS closest to the satellite.  This produces a positive distance 
angle called dstang_h.  This is the distance angle measured at the center of the Earth, 
from the ellipsoid intersection point to the ending LOS point (closest to satellite). 

e) The number of points needed to divide the LOS into ‘pieces’ that are horizontally 500 
meters apart is determined by: 

Npts = (dstang_h - dstang_l) /  (500 / earth_radius); 
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At the end of Step 1, the LOS point closest to the satellite (the end of the LOS) is 
guaranteed to be above the Earth surface, and the point farthest from the satellite (the 
start of the LOS) is guaranteed to be below the Earth surface.  We also have the 
horizontal distance from the Ellipsoid Intersection to the start (which may be zero) and 
the end of the LOS. 

2) Use function target_point, and the azimuth towards the satellite, to calculate the latitude and 
longitude of the start and end of the LOS.  We convert the latitude and longitude of the start 
and end points to positions on the TERECO DB grid. 

Spherical trigonometry (with earth radius determined from the latitude of the input point) is 
used.  The equations used are the Law of Sines for Plane Oblique Spherical Triangles, and 
the Law of Cosines for Plane Oblique Spherical Triangles.  The three points in the spherical 
triangle are:  the North Pole, the start point, and the end point.  Distance is specified as a 
distance measured at the center of the Earth and is therefore a distance angle rather than 
distance along the surface of the Earth. 

The worst case distance from the Ellipsoid Intersection point to the Earth surface 
emergence point is about 30 kilometers along the LOS.  The variation between a sphere 
and the WGS 84 Ellipsoid over this small distance is insufficient to change the answer by 
three meters.  That worst case rapidly changes to less than one meter only 100 pixels from 
the edge of scan. 

3) We now start at the LOS point closest to the satellite and calculate the next LOS point away 
from the satellite.  Use ancillary DB access functions to obtain the MSL height, the Ellipsoid-
Geoid separation, and the Earth surface height of the Ellipsoid at each point (which is the 
sum of those two numbers for this point).  The MSL height for each point is determined by 
bilinear interpolation of the GTOPO30 data.  The Ellipsoid Geoid Separation (EGS) numbers 
are a simple average of the four surrounding values.  The EGM96 data is so smooth that the 
simple average is never more than 25 centimeters from a value determined by bilinear 
interpolation. 

We also calculate the LOS altitude for this point.  The LOS altitude is adjusted for the 
curvature of the Ellipsoid along the LOS.  The LOS altitudes are meters above the WGS84 
Ellipsoid. 

4) At this point we compare the LOS altitude to the Earth surface height.  The search stops 
when the LOS altitude of the point is below the terrain.  Now, the terrain intersection is 
found, and the next point towards the satellite is above the terrain.  If the LOS altitude is not 
below the terrain, repeat steps 3 and 4 using the newly calculated point as the starting point. 

5) Interpolate data between the two points identified in Step 4 to find the location and MSL 
height where the LOS emerges from the Earth surface.  Since the interpolated position is in 
TERECO DB coordinates, we convert to latitude and longitude. 

a) By drawing a straight line between the two LOS points, and a straight line between the 
two Earth surface points, the fraction of a step along the LOS is determined by solving 
the equation for the intersection of two lines.  There is no divisor in the slope equations 
because the two points are one LOS step apart, and the calculated result is a fraction of 
that one LOS step. 

ees_slope = ees_height[sidx_p1] - ees_hgt[sidx]; 

los_slope = los_hgt[sidx_p1] - los_hgt[sidx];  

frac =  ( los_hgt[sidx] - ees_hgt[sidx] )  /  ( ees_slope - los_slope ); 
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where: 

ees-hgt is the Ellipsoid to Earth surface height, and that is the sum of the MSL height 
from the GTOPO30 data and Ellipsoid-Geoid separation from the EGM96 data 

los_hgt is the height of the LOS above the Ellipsoid 

sidx is the index of the point closest to the satellite, where the Earth's surface is above 
the LOS 

sidx_p1 is the point next to sidx, and the Earth surface at this point is checked to make 
certain it is below the LOS at this point 

b) Then frac is used to calculate the location where the LOS emerges from the Earth 
surface. 

lat_out =  lat[sidx] + { frac * (lat[sidx_p1] - lat[sidx] ) }; 

An analogous equation is used for longitude, except that two points spanning the 180 
degrees longitude line require variations on the above equation. 

6) Complete the results by adjusting Sun, satellite, and/or Moon angles for the new location.  
This is achieved by calling the sunAngles and/or moonAngles methods of Cmn Geo with the 
terrain corrected latitude and longitude.  If steps 2 through 5 were skipped, then this data is 
copied from the data for the Ellipsoid Intersection.  See Figure 3. 
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Figure 3. Terrain Adjusted Geolocation Schematic 

 

2.1.2.6 Functions for Adjusting Geolocation for Terrain Height 

2.1.2.6.1 ProSdrTerrainCorrect::terrainCorrection() 

This is the main function for terrain correction.  This function terrain corrects earth sample 
locations and satellite azimuth and zenith angles.  The inputs are the Ellipsoid Intersection data, 
and the outputs are corrected to the place where the LOS emerges from the Earth’s surface.  
When the Earth surface is above the Ellipsoid, the corrected point is towards the satellite 
(majority of cases), and when the Earth surface is below the Ellipsoid (Indian Ocean, Dead Sea, 
Death Valley, etc.) the corrected point is away from the satellite.   

2.1.2.6.2 ProSdrTerrainCorrect::applyOceanCorrection() 

This function adjusts the location of the pixel by the EGS value.  This adjustment happens when 
the pixel is an ocean pixel that is at least 28 km from land. 

2.1.2.6.3 ProSdrTerrainCorrect::calcTCSatAzmZen() 

This function calculates new satellite azimuth and zenith angles using the terrain corrected 
latitude and longitude values, MSL height, EGS height, and ECR satellite position vector. 

End point guaranteed 
to be above the surface 

Ellipsoid 

End point guaranteed 
to be below the surface Ellipsoid Intersection 

location

Geoid 

LOS to 
satellite 

Surface 

 

At each point along the LOS, simple 
comparison of height of LOS to sum 
(EGS + MSL surface height) says 
whether LOS is above or below surface. 

Terrain 
Corrected 
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2.1.2.6.4 ProSdrTerrainCorrect::setupLOSPoints() 

This function creates the starting LOS point (farthest from S/C) and ending LOS point (closest to 
S/C).  It then determines if the terrain intersection is above the end point or below the end point.  
(Based on the maxHgt field, most cases the terrain intersection is below the end point). 

2.1.2.6.5 ProSdrTerrainCorrect::calcGridFromLatLon() 

This function calculates new latitude/longitude values for an LOS point and then uses the 
latitude/longitude values to get terrain DB grid coordinates. 

2.1.2.6.6 ProSdrTerrainCorrect::fillTerrainPoint() 

This function retrieves a Digital Elevation Model (DEM) tile from DMS if necessary and fills an 
LOS point with the MSL, EGS (Ellipsoid – Geoid Separation), and EES (Ellipsoid to Earth 
Surface) height information. 

2.1.2.6.7 ProSdrTerrainCorrect::findTerrain() 

This function calculates a terrain corrected latitude/longitude, the MSL surface height, and 
satellite azimuth/zenith angles. 

2.1.2.6.8 ProSdrTerrainCorrect::fillTerrainPointBiInterp() 

This function fills an LOS point with MSL, EGS, EES, maxHgt, minHgt information using bi-
linear interpolation.  The four corner points around the point of interest are used in the 
interpolation. 

2.1.2.6.9 ProSdrTerrainCorrect::calcLOSHgt() 

This function calculates the LOS height of a point. 

2.1.2.6.10 ProSdrTerrainCorrect::calcStartPoint() 

This function fills the LOS point farthest away from the spacecraft with MSL, EGS, EES, 
maxHgt, minHgt information.  It also calculates if the point is below the terrain and moves the 
point far enough away to ensure it is below all terrain. 

2.1.2.6.11 ProSdrTerrainCorrect::determineIntersectAboveEndPt() 

This function is called if the end point calculated using the maxHgt is below the terrain.  This 
function moves along the LOS towards the spacecraft until the terrain intersection is found. 

2.1.2.6.12 ProSdrTerrainCorrect::calcAndFillPoint() 

This function calculates the latitude/longitude of an LOS point and also fills the LOS point with 
MSL, EGS, EES, maxHgt, minHgt information. 

2.1.2.6.13 ProSdrTerrainCorrect::determineIntersectBelowEndPt() 
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This function is called if the end point calculated using the maxHgt is above the terrain.  This 
function moves along the LOS away from the spacecraft until the terrain intersection if found. 

2.1.2.7 Functions for South Atlantic Anomaly 

2.1.2.7.1 ProSdrCmnGeo::getSAAIntensity() 

For a given location, getSAAIntensity estimates the number of single event upsets per year.  A 
higher number indicates a greater danger of increased radiation within the South Atlantic 
Anomaly (SAA) causing earth location errors within optical encoders and false hits within 
detector arrays. 

Inputs: 

1. inLat - Latitude of location in radians 

2. inLon - Longitude of the location in radians 

Outputs: 

1. outIntensity - Estimated event index 

2. return status - PRO_SUCCESS or an error code 

As per Tech Memo, Source of South Atlantic Anomaly Data, 2005/08/01 (NP-
EMD.2005.510.0089), the South Atlantic Anomaly is modeled as a 5-parameter Gaussian 
distribution parallel to the lat/lon lines, in accordance with an unpublished paper by the Toronto 
Mopitt Team, "The South Atlantic Anomaly seen by MOPITT Instrument," DRAFTsaa, 
22Nov2002.  The equation used to model the anomaly is 
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where Sindex = output SAA index value, 

Imax = maximum output value, 

in = input latitude, 

center = latitude at center of SAA , 

height = latitude height, of one standard deviation, 

in = input longitude, 

center = longitude at center of SAA, 

width = longitude width, of one standard deviation, and 2= 1.0. 
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The values for Imax, center, height, center, and width, are all obtained from the CmnGeo-SAA-AC-Int 
algorithm coefficients table.  

2.1.3 Graceful Degradation 

2.1.3.1 Graceful Degradation Inputs 

None. 

2.1.3.2 Graceful Degradation Processing 

None. 

2.1.3.3 Graceful Degradation Outputs 

None. 

2.1.4 Exception Handling 

The CMN GEO module produces two error messages— PRO_FAIL and PRO_GEO_ 
WARNING. 

PRO_FAIL is issued under the following conditions: 

1. Cannot retrieve data from DMS. 

2. Internal pointers are 0 (aka NULL). 

3. Cannot initialize NOVAS-C structures. 

4. INF Time Utility throws an exception. 

5. Specified time is out of range for JPL Planetary Ephemeris data in NOVAS-C functions. 

The methods in CMN GEO returns a PRO_FAIL if any of the above conditions are encountered. 

PRO_GEO_WARNING is issued under the following conditions: 

1. Input vector is 0 (aka NULL). 

2. E&A Point tai field is equal to FILL data. 

3. Input view vector is a NaNQ. 

4. The view vector does not intersect the ellipsoid. 

5. The latitude or longitude value that is calculated or used as input is not a valid value. 

6. An input time is out of range in the S/C E&A RDR data. 

7. The ProSdrCmnGeo has not been properly cleared before using. 

The methods in CMN GEO returns PRO_GEO_WARNING if any of the above conditions are 
encountered. 
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NOTE:  The detectAndFillGaps() method returns PRO_GEO_SHORTCUT, if it detects and fills 
a Stage 3 type gap.  This return value is caught by the initPointsMap() method and converted to 
a PRO_SUCCESS to designate a successful completion of the Common Geolocation Anomaly 
processing. 

2.1.5 Data Quality Monitoring 

See the SDR OADs for each sensor (i.e., VIIRS, OMPS, CrIS, ATMS, etc.). 

2.1.6 Computational Precision Requirements 

All internal calculations done at double precision as small scan angle errors lead to large 
geolocation errors.  The geodetic Latitude and Longitude numbers are stored in the geolocation 
objects as 32-bit floats, which can introduce a computational precision no larger than two 
meters in Earth location.  

2.1.7 Algorithm Support Considerations 

INF and DMS must be running before a Common Geo instance is used. 

2.1.8 Assumptions and Limitations 

2.1.8.1 Assumptions 

The CMN GEO algorithm assumes prior to processing, that the proper number of S/C E&A 
RDRs has been retrieved and byte-aligned.  If the proper number of S/C E&A RDRs could not 
be retrieved, then the CMN GEO code attempts to retrieve the Two-Line Element data and 
calculate the missing Ephemeris and Attitude data. 

2.1.8.2 Limitations 

The Common Geolocation and Terrain Correction methods need the external inputs identified in 
Table 4 before the execution of the code.  This must be done by calling the getInstance() - public 
method in Section 2.1.2.1.1 to properly initialize the Common Geolocation Library. 
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3.0 GLOSSARY/ACRONYM LIST 

3.1 Glossary 

Table 6 contains terms most applicable for this OAD. 

Table 6. Glossary 

Term Description 

Algorithm A formula or set of steps for solving a particular problem. Algorithms can be expressed in any 
language, from natural languages like English to mathematical expressions to programming 
languages like FORTRAN. On JPSS, an algorithm consists of: 

1. A theoretical description (i.e., science/mathematical basis) 
2. A computer implementation description (i.e., method of solution) 
3. A computer implementation (i.e., code). 

Algorithm 
Engineering 
Review Board 
(AERB)  

Interdisciplinary board of scientific and engineering personnel responsible for the approval and 
disposition of algorithm acceptance, verification, development and testing transitions. Chaired 
by the Data Process Algorithm Lead, members include representatives from STAR, DPES, 
IDPS, and Raytheon.. 

Algorithm 
Verification 

Science-grade software delivered by an algorithm provider is verified for compliance with data 
quality and timeliness requirements by Algorithm Team science personnel. This activity is 
nominally performed at the GRAVITE facility. Delivered code is executed on compatible 
GRAVITE computing platforms. Minor hosting modifications may be made to allow code 
execution. Optionally, verification may be performed at the Algorithm Provider’s facility if 
warranted due to technical, schedule or cost considerations. 

Ancillary Data Any data which is not produced by the JPSS System, but which is acquired from external 
providers and used by the JPSS system in the production of JPSS data products. 

Auxiliary Data Auxiliary Data is defined as data, other than data included in the sensor application packets, 
which is produced internally by the JPSS system, and used to produce the JPSS deliverable 
data products. 

EDR Algorithm  Scientific description and corresponding software and test data necessary to produce one or 
more environmental data records. The scientific computational basis for the production of each 
data record is described in an ATBD. At a minimum, implemented software is science-grade 
and includes test data demonstrating data quality compliance. 

Environmental 
Data Record 
(EDR) 

[IORD Definition]  
Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to 
geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.).  
[Supplementary Definition] 
An Environmental Data Record (EDR) represents the state of the environment, and the related 
information needed to access and understand the record.  Specifically, it is a set of related 
data items that describe one or more related estimated environmental parameters over a 
limited time-space range.  The parameters are located by time and Earth coordinates.  EDRs 
may have been resampled if they are created from multiple data sources with different 
sampling patterns.  An EDR is created from one or more JPSS SDRs or EDRs, plus ancillary 
environmental data provided by others.  EDR metadata contains references to its processing 
history, spatial and temporal coverage, and quality. 

Model Validation The process of determining the degree to which a model is an accurate representation of the 
real-world from the perspective of the intended uses of the model.  

Model Verification The process of determining that a model implementation accurately represents the developer’s 
conceptual description and specifications. 

Operational Code Verified science-grade software, delivered by an algorithm provider and verified by GRAVITE, 
is developed into operational-grade code by the IDPS IPT.  

Operational-
Grade Software  

Code that produces data records compliant with the System Specification requirements for 
data quality and IDPS timeliness and operational infrastructure. The software is modular 
relative to the IDPS infrastructure and compliant with IDPS application programming interfaces 
(APIs) as specified for TDR/SDR or EDR code. 

Raw Data Record [IORD Definition] 
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Term Description 

(RDR) Full resolution digital sensor data, time referenced and earth located, with absolute radiometric 
and geometric calibration coefficients appended, but not applied, to the data. Aggregates 
(sums or weighted averages) of detector samples are considered to be full resolution data if 
the aggregation is normally performed to meet resolution and other requirements. Sensor data 
shall be unprocessed with the following exceptions: time delay and integration (TDI), detector 
array non-uniformity correction (i.e., offset and responsivity equalization), and data 
compression are allowed. Lossy data compression is allowed only if the total measurement 
error is dominated by error sources other than the data compression algorithm. All calibration 
data will be retained and communicated to the ground without lossy compression.  
[Supplementary Definition] 
A Raw Data Record (RDR) is a logical grouping of raw data output by a sensor, and related 
information needed to process the record into an SDR or TDR.  Specifically, it is a set of 
unmodified raw data (mission and housekeeping) produced by a sensor suite, one sensor, or 
a reasonable subset of a sensor (e.g., channel or channel group), over a specified, limited time 
range.  Along with the sensor data, the RDR includes auxiliary data from other portions of 
JPSS (space or ground) needed to recreate the sensor measurement, to correct the 
measurement for known distortions, and to locate the measurement in time and space, through 
subsequent processing. Metadata is associated with the sensor and auxiliary data to permit 
its effective use. 

Retrieval 
Algorithm 

A science-based algorithm used to ‘retrieve’ a set of environmental/geophysical parameters 
(EDR) from calibrated and geolocated sensor data (SDR).  Synonym for EDR processing. 

Science Algorithm The theoretical description and a corresponding software implementation needed to produce 
an NPP/JPSS data product (TDR, SDR or EDR). The former is described in an ATBD. The 
latter is typically developed for a research setting and characterized as “science-grade”. 

Science Algorithm 
Provider 

Organization responsible for development and/or delivery of TDR/SDR or EDR algorithms 
associated with a given sensor. 

Science-Grade 
Software 

Code that produces data records in accordance with the science algorithm data quality 
requirements. This code, typically, has no software requirements for implementation language, 
targeted operating system, modularity, input and output data format or any other design 
discipline or assumed infrastructure. 

SDR/TDR 
Algorithm 

Scientific description and corresponding software and test data necessary to produce a 
Temperature Data Record and/or Sensor Data Record given a sensor’s Raw Data Record. 
The scientific computational basis for the production of each data record is described in an 
Algorithm Theoretical Basis Document (ATBD). At a minimum, implemented software is 
science-grade and includes test data demonstrating data quality compliance. 

Sensor Data 
Record (SDR)  

[IORD Definition]  
Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to 
calibrated brightness temperatures with associated ephemeris data. The existence of the 
SDRs provides reversible data tracking back from the EDRs to the Raw data.  
[Supplementary Definition] 
A Sensor Data Record (SDR) is the recreated input to a sensor, and the related information 
needed to access and understand the record.  Specifically, it is a set of incident flux estimates 
made by a sensor, over a limited time interval, with annotations that permit its effective use. 
The environmental flux estimates at the sensor aperture are corrected for sensor effects.  The 
estimates are reported in physically meaningful units, usually in terms of an angular or spatial 
and temporal distribution at the sensor location, as a function of spectrum, polarization, or 
delay, and always at full resolution.  When meaningful, the flux is also associated with the point 
on the Earth geoid from which it apparently originated.  Also, when meaningful, the sensor flux 
is converted to an equivalent top-of-atmosphere (TOA) brightness.   The associated metadata 
includes a record of the processing and sources from which the SDR was created, and other 
information needed to understand the data. 

Temperature Data 
Record (TDR) 

[IORD Definition]  
Temperature Data Records (TDRs) are geolocated, antenna temperatures with all relevant 
calibration data counts and ephemeris data to revert from T-sub-a into counts.  
[Supplementary Definition] 
A Temperature Data Record (TDR) is the brightness temperature value measured by a 
microwave sensor, and the related information needed to access and understand the record.  
Specifically, it is a set of the corrected radiometric measurements made by an imaging 
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Term Description 

microwave sensor, over a limited time range, with annotation that permits its effective use.  A 
TDR is a partially-processed variant of an SDR.  Instead of reporting the estimated microwave 
flux from a specified direction, it reports the observed antenna brightness temperature in that 
direction.   
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3.2 Acronyms 

Table 7 contains terms most applicable for this OAD. 

Table 7. Acronyms 

Acronym Description 

AM&S Algorithms, Models & Simulations 

API Application Programming Interfaces 
CMN GEO Common Geolocation 

CSN Collection Short Name 

DMS Data Management Subsystem 

DQTT Data Quality Test Table 
E&A Ephemeris and Attitude 

ECEF Earth-Centered Earth-Fixed 

ECF Earth-Centered Fixed 

ECR Earth-Centered Rotating 

ECSF Earth-Centered Space-Fixed 

EES  Ellipsoid to Earth’s Surface 

EGM Earth Geoid Model 

EGS Ellipsoid Geoid Separation 

EPHATT Ephemeris ad Attitude Structure 

IET IDPS Epoch Time is the time in number of microseconds since 1-1-1958 00:00:00 

IIS Intelligence and Information Systems 
INF Infrastructure 

ING Ingest 

IP Intermediate Product 
LOS Line of Sight 

LUT Look-Up Table  
MSL Mean Sea Level 

NOVAS-C Naval Observatory Vector Astrometry System – C version 

PRO Processing 
QF Quality Flag 

SAA South Atlantic Anomaly 

SDR Sensor Data Records 

SI Software Item or International System of Units 

STL Standard Template Library 

TBD To Be Determined 

TBR To Be Resolved 

TLE Two Line Element files following the format specified by NORAD 

TOA Top of the Atmosphere  

UT1 Universal Time One 
UTC Universal Time Coordinated 
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4.0 OPEN ISSUES 

Table 8. List of OAD TBD/TBR 

No. DESCRIPTION Resolution Date 

None   

 
 


